B Ref. Ares(2022)3321487 - 29/04/2022

HORIZON2020 el

219 * X %
oGy % ks
S INTERSECT RS
o312 * *
Internal check tests and IM2D documentation “o" XEar

Deliverable D1.7

D1.7

Internal check tests and IM2D documentation

Matthias Blschelberger, Kathrin Frei, Matteo Bertocchi, Claudio Rosati, and
Arrigo Calzolari

www.intersect-project.eu 1

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

Document information

Project acronym: INTERSECT

Project full title: Interoperable Material-to-Device simulation box for
disruptive electronics

Research Action Project type: Accelerating the uptake of materials modelling software
(IA)

EC Grant agreement no.: 814487

Project starting / end date: 1%t January 2019 (M1) / 30™ April 2022 (M40)

Website: www.intersect-project.eu

Final version: 29/04/2022

Deliverable No.: D1.7

Responsible participant: Fraunhofer (participant number 5)

Contributing Consortium members: AMAT, CNR

Due date of deliverable: 30/04/2022

Actual submission date: 29/04/2022

Dissemination level: PU - Public

Authors: Matthias Blischelberger, Kathrin Frei, Matteo Bertocchi,

Claudio Rosati & Arrigo Calzolari.

To be cited as: M. Bischelberger, K. Frei, M. Bertocchi, C. Rosati, and A.
Calzolari (2022): Internal check tests and [IM2D
documentation (final version as of 29/04/2022). EC grant
agreement no: 814487, Fraunhofer Gesellschaft Zur
Foerderung Der Angewandten Forschung E.V., Freiburg,
DE.

Disclaimer:

This document’s contents are not intended to replace consultation of any applicable legal sources or
the necessary advice of a legal expert, where appropriate. All information in this document is provided
"as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The
user, therefore, uses the information at its sole risk and liability. For the avoidance of all doubts, the
European Commission has no liability in respect of this document, which is merely representing the
authors' view.

www.intersect-project.eu 2

HORIZON2020

< INTERSECT

Internal check tests and IM2D documentation

Versioning and Contribution History

Version Date Modified by Modification reason

v.01 21/04/2022 Matthias First version
Blschelberger

v.02 29/04/2022 Arrigo Calzolari Final version

www.intersect-project.eu 3

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

Contents

. Executive Summary
. Description of the work done
. Deviation from planned work in the DoA

. Central repository, versioning system and development organisation of IM2D code

4.1 Main repository and management of dependencies
4.2 Dockerfiles

4.3 Docker-registry, versioning and organisation of development

. Gitlab Cl

. Unit tests

6.1 Basic tests
6.2 Advanced tests

6.3 Advanced tests with Hubbard-U parameters

. IM2D documentation

7.1 GUI manual

7.2 ReadTheDocs for IM2D backend
7.2.1 Installation guide
7.2.2 Description of properties, functionalities and ontologies
7.2.3 User tutorials

7.3 Swagger Ul

Conclusion and outlook

References and links

Acronymst

1 Acronyms are marked in purple in the text and defined at the end of the document.

www.intersect-project.eu

°INTERSECT

o 00 OO O o U1 wn

11
12
13
13
14
15
15
16
18
19
22
23
25
26
26

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

1. Executive Summary

The content of this deliverable is related to Task T1.5 (Software engineering up to TRL7) and
describes in detail the current status of the IM2D code repositories and their dynamic links to
each other (Section 4), the implementation of the git-pipeline (Section 5), the unit tests created
to check the code functionality and stability (Section 6), and the IM2D documentation on the
REST-API and app architecture of the simulation box (Section 7). All the actions reported in this
deliverable define the quality of the development organisation, the reproducibility and the
maintainability of the IM2D codebase. Since there are no considerable deviations from the
planned work, the activities converge with common standards for quality assurance measures
in software development and, hence, build a solid fundament for future extensions and
improvements of the IM2D app without breaking the stability of previous versions.

2. Description of the work done

During the period M25-M40, Fraunhofer IWM has continuously worked on improvements of
the IM2D code on the Fraunhofer Gitlab as well as on automated tests for checking the code
stability, the code documentation for installation, code capabilities and code usage tutorials.
The latter was demonstrated during the Online TechCafé on March 29t 2022 (see D4.9), in
collaboration with EPFL and CNR colleagues.

All available versions of the IM2D code developed during the project have been virtualized
through Docker and are available as light-weighted virtual machines (containers) in the Docker
registry of the Fraunhofer Gitlab. This allows any registered user to easily download the related
containers on any individual local machine and run the application without installing and
configuring the code components from scratch. The advantages of this technology for the
IM2D framework were previously discussed in D1.6% (GUI deployment).

The actions described above boost the reproducibility, code quality, stability and
maintainability of the whole application.

According to the DoA, the T1.5 activities include:

a) Creation of a central code repository and versioning system

b) Organisation of software development

c) Definition and implementation of a testing protocol for each of the components of the
IM2D box, and of the interfaces, wrappers and plugins for interoperability

d) Construction of a battery of tests to feed the protocol defined above

e) Production of software documentation, including description of models, physical
equations and material relations; code architecture, installation and user guide, and
test execution examples.

2 https://intersect-project.eu/wp-content/uploads/2022/04/D1.6.pdf
www.intersect-project.eu 5

HORIZON2020 3 I
owmg T T * *
Deliverable D1.7 i * *
2.0 * % *

Internal check tests and IM2D documentation

In the course of this document, Section 4 (Central repository, versioning system and
development organization of IM2D) addresses the points (a) and (b); Section 5 (Gitlab Cl)
discusses action (c); Section 6 (Unit tests) relates to activity (d); point (e) is described in Section
7 (IM2D documentation).

3. Deviation from planned work in the DoA

Although there are no considerable deviations from the planned actions, we report the
following aspects:

- The DoA proposed to include the detailed descriptions of the models, equations and
material relations which are used in the IM2D framework. However, since a large
collection of the workflows facilitated in AiiDA through the related plugins - such as,
e.g., AiiDA-Siesta and AiiDA-Quantum-Espresso - were developed independently of
IM2D, detailed descriptions of the underlying models and equations are not included
in the developed documentation. On the contrary, specific code documentation,
publications and INTERSECT-deliverables are linked and cited as needed. This also
applies to the descriptions pertaining to the models of SESTA and Quantum-Espresso
(QE) codes.

- Additionally, the consortium partners are discussing the publication of the app
components on Github. Therefore, the development system might not be continued on
the private Fraunhofer Gitlab but displaced on a public repository on Github.

4. Central repository, versioning system and development organisation of IM2D
code

4.1 Main repository and management of dependencies

At the time of submission of this deliverable, the main repository [1] includes all of the IM2D-
app components and is hosted on the Fraunhofer Gitlab. This repository, called aiida-wrapper,
contains the semantic interface of SimPhoNy and AiiDA as well as the SimPhoNy-REST API that
uses the wrapper in order to communicate with any HTTP-client, such as the IM2D GUI
developed in the project (see D1.6). A screenshot of the repository with its contents is
presented in Figure 1.

www.intersect-project.eu 6

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

A AiiDA wrapper & Q|| %star o[¥rork |0
Project ID: 8640 [

-©0- 401 Commits ¥ 3 Branches <¢?6Tags [2.1 MBFiles EJ6.5 MB Storage @7 4 Releases

master aiida-wrapper / @ + v History Find file Web IDE & v

+$%, Merge branch ‘enh/generic_code_installation’ into ‘master’ [+«+ @ c9f2da21 | [
2004 P .) o
“<+ Matthias Bischelberger authored 1 week ago

& Upload File | | [README | | & Other | | [CI/CD configuration | | B Add CHANGELOG H

Add Kubernetes cluster 3 Configure Integrations

Name Last commit Last update
B .docker update entrypoint for generic fetching of ... 1 week ago
£ examples update jupyter notebooks, docker-compo... 3 weeks ago
B osp debug unittests for input parameters 1 week ago
B test debug unittests for input parameters 1 week ago
@ aiida-defects @ des93+e63 Initial release 3 months ago
@ aiida-pseudo @ def6791b Initial release 3 months ago
® aiida-quantumespresso @ cb5f4657 Initial release 3 months ago
® aiida_post @ 983809058 update jupyter notebooks, docker-compo... 3 weeks ago
® aiida_siesta_plugin @ 932192d7 update submodules, entrypoints and engi... 1 month ago
@ allegrograph-wrapper @ 8a9efcee Initial release 3 months ago
@ im2d-electronic-calculations @ d27fe306 debug retrieval of chemical formula, add f... 3 weeks ago
0 flakes flake8 1 month ago

Figure 1: Screenshot of the aiida-wrapper repository on the Fraunhofer Gitlab. The repository hosts the source code for the
semantic interfaces and the operating REST-API of SimPhoNy (“osp”-directory), the dynamically linked dependencies

” u ” o«

(submodules: “aiida-defects”, “aiida-quantumespresso”, “aiida-pseudo”, etc), the implementations of the unit tests for code
stability (“tests”-directory) and the related Docker files- and configurations (“.docker”-directory).

The aiida-wrapper repository is dynamically linked (via git-submodules) to other git-
repositories such as the AiiDA-plugins of aiida-quantumespresso [2], adiida-siesta [3], aiida-
defects [4], adiida-pseudo [5], and aiida-post [6]. Other repositories, for example the
allegrograph-wrapper [7] (a SimPhoNy-interface to the triplestore-software of Allegrograph),
as well as the IM2D-ontology [8] based on EMMO (called im2d-electronic-calculations), are
included as submodules as well. Since most of the mentioned plugins are hosted on public
Github (exceptions: allegrograph-wrapper, aiida-post-plugin, im2d-electronic-calculations-
ontology), this dynamic linking of the dependencies assures a reproducibility and an easy

www.intersect-project.eu 7

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

installation procedure of the whole IM2D-code from scratch, without statically including the
dependency source-code in the aiida-wrapper-repository. The linking functionality to
submodules is also guaranteed, in the case the repository is moved to another Git-host.
Additionally, submodules are pinned to certain versions/commits of the remote repository, so
that previous versions of the IM2D-code can be recovered, even if the dependency is updated.

Currently, the aiida-defects-plugin is privately available on Github; while allegrograph-
wrapper, aiida-post-plugin, and im2d-electronic-calculations-ontology are hosted on the
private Fraunhofer Gitlab. At the time of this report, a move of these repositories to public
Github is under discussion by the consortium.

4.2 Dockerfiles

Submodules are especially useful for building Docker-images, which provide a fast and easy
deployment on any arbitrary host-machine, such as production HPC servers or local systems.
The Docker and the Docker-compose files for the deployment of the IM2D app are included in
the aiida-wrapper-repository. The images for the virtual machines (called containers in Docker)
can be pushed and pulled from the Docker-registry of the Fraunhofer Gitlab. This allows the
user to access the images without building them from scratch: A potential user of the IM2D
box only needs to install Docker on the operating system, clone the aiida-wrapper repository
and pull the containers from the Docker-registry. Building the images from scratch should only
be considered when a new release of the app is published.

The installation guide is reported below in the IM2D documentation (see chapter 7 — IM2D
documentation). For further details about the deployment through Docker, see D1.6.

4.3 Docker-registry, versioning and organisation of development

The development of the application exploited the standard capabilities of the git-software-
development tool suite. This allows for parallel development on different branches of the
repository, without breaking stable versions of previous releases. Additionally, each release
features notes that describe the newest developments and the bugs fixed, with respect to
previous versions.

The commit-history, as shown in Figure 2, makes the changes in the code, among different
variants, recoverable and traceable. The Docker-images (Figure 3) of each release are
continuously pushed to the Docker-registry (see Figure 4) of the Fraunhofer-Gitlab.

www.intersect-project.eu 8

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

~ SimPhoNy > Wrappers > AiiDA wrapper > Tags

Tags give the ability to mark specific points in history as being important

©ve.5
-0 c9¥2da21 - Merge branch 'enh/generic_code_installation' into 'master' - 1 week ago
@ Release v0.5

* add generic installation for new codes and remote computers in AiiDA

© vo.4.1
- 1260616 - Merge branch 'dev' into 'master’ - 2 weeks ago
& Release v0.4.1

Hotfix: pin dependencies of SimPhoNy

©ve.4
- d335abf1 - Merge branch 'dev' into 'master’ - 2 weeks ago
& Release v0.4
Changes in V@.4:
* separate QE from the AiiDA-Container
* Add Siesta-container
* Add Siesta-plugin
* enable ssh-connections to QE/Siesta
* add first unittests
* bring back the git-pipeline
* make a separate property-mapping for AiiDA-post
* add Jupyter-notebooks with tutorials
* add healthchecks for docker containers
* add parser for syntactic inputs (e.g. JSON) in order to accelerate the submission

©ve.3
- d12bb8c4 - Merge branch 'dev' into ‘master' - 2 months ago
& Release v0.3

© vo.2
- 5159b1c1 - Merge branch 'dev' into 'master’ - 3 months ago

Filter by tag name Q| | Updated date v | |

Introduce json-1d endpoints, debug some get-methods, while waiting for response of post-method, add docker secrets.

©ve.1
- 7c163e9 - Merge branch 'dev' into ‘master' - 3 months ago

Initial release for MarketPlace

® &yl o2 B
svllela
A
svllella

Figure 2: Release history with release notes of the aiida-wrapper plugin for SimPhoNy.

Bugs, feature requests or unexpected behaviours can be reported through the common usage
of issues on git and, therefore, can be related to ongoing developments and new releases.

The remaining functionalities of git that were not touched in this section are described in the
previous deliverable (D1.23 - Creation of code repository and versioning system).

3 https://intersect-project.eu/wp-content/uploads/2022/04/D1.2.pdf

www.intersect-project.eu 9

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

Root image @
© 5tags () Cleanup disabled ¢ Last updated 3 months ago

[Filter results

IQJ Name v |z

lj 5 tags

M v0.3 r?} bl

413.80 MiB
® Published to the simphony/wrappers/aiida-wrapper image repository at ©7:39 GMT+21ee on 2822-82-1@

Manifest digest: sha256:52e@a24bedf71c112af@28fa@399d677ab39bd7eea76c31ebadbc24fea2cbe9s f

@ Configuration digest: sha256:918c17@2bSaffcaeal9d88671f7cbdfes5fc619f1cb519243688548418d1a39067 r"

() Vo4 & o

414.29 MiB
@ Published to the simphony/wrappers/aiida-wrapper image repository at e4:38 GMT+2222 on 2022-84-84

Manifest digest: sha256:@88516134669490afdabgbggdfafazeadsseldieddedeselc32caacschfagadf [

@ Configuration digest: sha256:6412df348e64fdc15dce4f76fcc6ce596e89b8@63718e235a1dc1d516cC38ede [°‘

M v0.4.1 Q} L

414.29 MiB

® Published to the simphony/wrappers/aiida-wrapper image repository at @4:38 GMT+2222 on 2022-84-84

Manifest digest: sha256:888516134 fdabgbsgdfafa2eadsse1dieddedeselc32caacscbfagadf (3

@ Configuration digest: sha256:6412df348e64fdc15dce4f76fcc6ce596e89b8@63718e235a1dc1d516cc38ede f"

O vos & [

414.30 MiB
@ Published to the simphony/wrappers/aiida-wrapper image repository at ©1:19 GMT+@20e on 2822-84-11
Manifest digest: sha256:74482c@e2810d19453342628d@8811b1c857@6CCa999cfE@631df9f81a18a7a2 f:‘

@ Configuration digest: sha256:@a261@ede2@e4b2ds5d33f9978fe422c6f7950f8a53196348d999ec78d9befeds ["‘

Delete Selected

Published 2 months ago

Digest: 52e0a24

Published 2 weeks ago

Digest: 0885161

Published 2 weeks ago

Digest: 0885161

Published 1 week ago

Digest: 74482c0

Figure 3: Overview of Docker-images of each IM2D-release on the Docker-registry of the Fraunhofer Gitlab. The AiiDA-,
Quantum-Espresso-, and Siesta-images are also hosted on this platform but are not displayed in this figure.

www.intersect-project.eu

10

HORIZON2020

Deliverable D1.7

Internal check tests and IM2D documentation

All 2n Pending

Status

‘ © passed ‘

© passed ‘
‘ © passed ‘
‘ @ passed ‘

‘ © passed ‘

0

Name

compile

compile

compile

compile

compile

5. Gitlab CI

Running 0 Finished 211

Job

#1751941 % hubbard -o- d6a26770

#1751913 ¥ hubbard -o- f23beb63

#1751826 ¥ hubbard -o- c7cc4106

#1751800 ¥ hubbard -o- d4f872b8

#1751686 ¥ hubbard -o- 266445b7

Pipeline

#663456 by £

#663438 by i

#663410 by £

#663399 by

#663335 by

°INTERSECT

Stage

build

build

build

build

build

y 00:00:23

Duration Coverage

% 00:00:23 C
B 20 hours ago

21 hours ago C
% 00:00:23 C

21 hours ago
& 00:00:36

22 hours ago C
% 00:00:24 C

23 hours ago

Figure 4: List of the most recent pipelines for the aiida-wrapper repository.

The continuous integration (Cl) on Gitlab is a standardised process that can be fully managed
by a markup file written in yaml-format. This specification triggers a pipeline of Docker-
containers, which execute a suite of tests every time a commit has been pushed to the aiida-
wrapper-repository. Each pipeline process and its attributes (e.g., commit, duration, etc.), are
stored and available on the respective Gitlab repository, as shown in Figure 5. This assures a
protocol for tracing changes in the codebase, whether new features run as expected, and
whether all functionalities of the application still work or whether the new changes broke pre-
existing capabilities.

Searching for ply==3.11

Best match: ply 3.11

Adding ply 3.11 to easy-install.pth file

Using /usr/local/lib/python3.9/site-packages

Searching for decorator==5.1.1

Best match: decorator 5.1.1

Adding decorator 5.1.1 to easy-install.pth file

Using /usr/local/lib/python3.9/site-packages

Finished processing dependencies for simphony-aiida==0.4

./osp/wrappers/aiida/setup.py:23:30: F541 f-string is missing placeholders

./osp/wrappers/aiida/submit.py:71:80: E501 line too long (82 > 79 characters)

./osp/wrappers/aiida/submit.py:118:80: E501 line too long (82 > 79 characters)

./osp/wrappers/aiida/utils.py:46:80: E501 line too long (82 > 79 characters)

./osp/wrappers/aiida/main.py:9:1: F401
./osp/wrappers/aiida/main.py:47:80: E501 line
./osp/wrappers/aiida/sparql_backend.py:33:80:
./osp/wrappers/aiida/sparql_backend.py:34:80:
./osp/wrappers/aiida/resources.py:6:1: F401
./osp/wrappers/aiida/resources.py:19:80: E501

' .openapi.convert’ imported but unused
too long (81 > 79 characters)

E501 line too long (85 > 79 characters)
E501 line too long (81 > 79 characters)
'.proxy.Proxy' imported but unused

line too long (87 > 79 characters)

./osp/wrappers/aiida/resources.py:60:80: E501 line too long (88 > 79 characters)

compile i
‘ New issue ‘

Duration: 41 seconds
Finished: 2 weeks ago
Timeout: 1h (from project) ®

Runner: #1575 (c10k3cT2) Standard
SimPhoNy runner with default-registry-
image as default

Commit 99627cec [f}

major refactor: allow only one login of
per flask session to Allegrograph and
import the configuration only once

(® Pipeline #651078 for dev [3}

build v

- (¥ compile

Figure 5: Example of a failed pipeline for a certain commit due to bad code style.

www.intersect-project.eu

11

HORIZON2020 * X %
% ks
INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

The Docker-images for the AllegroGraph-software are pulled from the public Dockerhub. The
same also holds for the postgres-database used by AiiDA. The Docker containers hosting AiiDA,
QE and Siesta are run from the pre-existing images from the Fraunhofer Gitlab Docker-registry.
On the other hand, the SimPhoNy-container (which only comprises the source code of the
aiida-wrapper-repository) is entirely rebuilt for testing the implementations within the
pipeline. The rebuilding includes the installation of OSP-core and the allegrograph-wrapper as
well as the installation of the im2d-electronic-calculations- ontology in OSP-core and the setup
of the databases on AllegroGraph.

After rebuilding is completed, a set of checks for the code style and a variety of unit tests for
the simulation box are run within the SimPhoNy-container. In case of a test failure, the
underlying protocol of the Gitlab pipeline raises an error and also forwards the traceback of
this exception towards the code-maintainer. Since the pipeline can be automatically repeated
in fixed intervals without pushing any new commits, this functionality represents the most
suitable technology for assuring the long-time stability of the IM2D app and all of its
components. The tests are further explained in Section 6 (Unit tests).

If the repositories will be moved to public Github, the protocol has to be translated into the
format of the new platform, because the yaml-specifications between Gitlab and Github are
not mutually compatible.

6. Unit tests

Unit tests are standard procedures in software development in order to provide a self-
controlled mechanism to verify that the developed functionalities of the codebase return the
data expected in specific data types, serialisation formats and accuracies. They react very
sensitively to any small change or error in the code and detect even very slight differences in
the data returned by the software. Since unit tests can be executed automatically and repeated
infinitely, they represent a key technology for code stability and are easily applicable for CI/CD
(see Section 5 - Gitlab Cl).

Due to the complexity of the overall IM2D simulation box, the unit tests were categorised into
basic, which succeed after a short period of time, and advanced, which can take up to one hour
since they run several workflows in AiiDA, trigger simulations in QE and SIESTA for a standard
material, and compare the output of the executed simulations with expected values. All of
these tests run fully automatically and independently from the action of the software
developer.

Additionally, separate tests were implemented for applying the Hubbard-U parameters of QE
to the AiiDA-workflows. Since these parameters were added very recently to the advanced

www.intersect-project.eu 12

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

user profile (persona D1.1%) of the simulation box, at present they are separated from the
common advanced tests, which deliver more stable results. Finally, they will be integrated into
the entire suite of tests.

6.1 Basic tests

The translation between the syntactic and semantic data is one of the main functionalities of
the agiida-wrapper and represents one potential source of error for a failed workflow. The basic
unit tests for the aiida-wrapper repository check the conversion of semantic CUDS (ontology
individuals representing materials entities and simulation in/output specifications — see D1.3°
and D2.5%) into the syntactic JSON data to be submitted to the AiiDA-REST API. In order to make
the test more streamlined, the simulation is mocked and dummy data is returned, so that the
back-and-forth conversion of CUDS can be tested efficiently.

Additionally, the forwarding of the information about the high-level requirements for each
persona (ergo: “which are the inputs for a certain workflow?” for each user profile) through
the REST-API of SimPhoNy is tested. The SPARQL-queries retrieve information through the
allegrograph-wrapper from the ontology-classes deployed at the AllegroGraph triplestore. The
result holds input information such as the related ontology-class-IRI of a physical quantity, its
atomic units, its physical dimensions, further-reading-suggestions and its expected data-types
(see D2.5). This functionality needs to be tested continuously when the ontology is maintained
since it is crucial information to be parsed by the GUI. Small changes in the formatting returned
by the REST-service may cause erroneous displaying in the GUI.

Furthermore, the functionality of forwarding recommendations for different simulation
accuracies for these input parameters is tested for a standard material (silicon). This type of
unit test is essential because the response coming from the REST-API must be correctly
processed by the GUI and the implementation is a complex mix of a SPARQL-query towards
the AllegroGraph triplestore for the given persona-input and an http-query for a QE-protocol
to the AiiDA-container.

6.2 Advanced tests

As mentioned above, advanced unit tests trigger workflows in AiiDA for the computation of
material properties (such as the band gap, band structure, dielectric constant, effective mass,
etc.) by running simulations in QE and SIESTA. Each computation runs on low accuracy and a
standard material (silicon) for roughly 15 minutes. A tolerated deviation for the returned
values, e.g., of the band gap calculated by AiiDA, is currently 1e-13 eV. Nevertheless, it has to
be stressed that this test is conceived only for assuring software stability, not for validating the
feasibility of the returned values.

4 https://intersect-project.eu/wp-content/uploads/2022/04/D1.1.pdf
5 https://intersect-project.eu/wp-content/uploads/2022/04/D1.3.pdf
% https://intersect-project.eu/wp-content/uploads/2022/04/D2.5.pdf
www.intersect-project.eu 13

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 e e
* 5 Kk

Internal check tests and IM2D documentation

Advanced unit tests are executed for three different user profiles (basic, intermediate and
advanced) and different serialisation formats (JSON for direct syntactic input or JSON-LD for
semantic data from CUDS). Thus, a high duration of the whole pipeline process can be
reasonably expected. Therefore, we decided to separate these advanced tests from the basic
unit tests, so that only basic tests are triggered in the Gitlab pipeline for each commit, but
advanced tests are solely executed on merge requests and commits to the master branch. A
code snippet of such a unit test is shown in Figure 6.

class TestBandstructureSyntactic(TestCase):
PATH = os.path.dirname(os.path.realpath(__file_))

@mock.patch.object(Proxy, "get", side_effect=MockJsonReponse.get)
@mock.patch.object(Proxy, "post", side_effect=MockJsonReponse.post)
def test_band_structure_post(self, m _post_ 2, mock_

Si = os.path.join(self.PATH, "Si.json")

bandGap = ©.6048960165406
effectiveMass = 1.2643012053893

relaxedEnergy = -310.56823314965

url_nodes = "/api/v4/intersect/nodes/create/structure”

iana_url = "https://www.iana.org/assignments/media-types/"

url_post = f"/api/v4/intersect/submit"
url_status = "/api/v4/intersect/status"
url_cuds = "/api/v4/intersect/cuds"

Figure 6: Code snippet from an advanced unit test for a basic workflow of the band gap, effective mass and relaxed energy of
silicon. Variables in the lines 31-33 are values normally returned by AiiDA for a fast computation. The values have not been
validated; they are only used as a reference for software stability. This test has been consecutively executed with success in

the latest development stages with a tolerated deviation of 1e-13 for each value.

6.3 Advanced tests with Hubbard-U parameters

In the last part of the project, new parameters, such as the Hubbard-U, were added for the
advanced persona profile. Since the simulations do not currently return stable results, the
corresponding unit tests are separate from those mentioned in Sections 6.1 and 6.2, and are
therefore not contained in the Gitlab pipeline at present. The success of the computation
depends on the parameterization of the inputs, the pseudo-potentials used by AiiDA, and the
version of QE used by AiiDA. Potential materials to test these parameters are W03 and ZnO.
The workflow for using the Hubbard-U parameters of QE needs to be fine-tuned in order to
assure the stability of the simulation results. At present, the band gap-workchains in AiiDA
trigger a relaxation by default before a band-structure calculation run is executed in QE. This
changes the distribution of the atoms in the unit cell and, consequently, the symmetry of the
structure. In order to successfully and reasonably apply the Hubbard-U parameters in the IM2D

www.intersect-project.eu 14

HORIZON2020 % x
% ks
- INTERSECT
Deliverable D1.7 o e
* 5 X

Internal check tests and IM2D documentation

simulation box, the workflows have to be modified to make a relaxation optional when the
input material is considered to be already relaxed.

7. IM2D documentation

The manuals and documentation for the IM2D simulation toolbox are split into the following
components:

- the user manual of the GUI,

- the documentation of the backend services of SimPhoNy and AiiDA,

- the documentation of the REST-API through the Swagger user interface (Ul).

The user manual of the GUI is a PDF-document provided by AMAT, which provides a detailed
description for end users about the graphical frontend and its main operation instructions
(Figure 7). The documentation of the backend services is a ReadTheDocs-page provided by
Fraunhofer and focuses on the toolbox capabilities and functionalities. The IM2D ontology and
the app architecture are also described in the manual, along with the installation guide and the
tutorials for the REST-API of IM2D. The documentation of the REST-API through the Swagger
Ul, a graphical interface used as an index page for the IM2D REST-API, reports on all available
endpoints of the Flask-server used by SimPhoNy.

7.1 GUI manual
The GUI software and the related manual for the IM2D box can be requested by contacting the
INTERSECT coordinator (intersect@nano.cnr.it) or the AMAT customer service.

As already stated in D1.6 (GUI deployment), the graphical user interface, which was specifically
developed for the IM2D toolbox, is copyrighted by AMAT and hence it is a proprietary software.
This leads to a separation between the documentation of the GUI and the backend services of
SimPhoNy & AiiDA.

The user guide for the IM2D frontend describes how the user interface is organised, how the
different plugins (AiiDA, SimPhoNy, Optimade) can be accessed, and how they can be
configured. The manual also contains a detailed description of all the available features and
operations.

www.intersect-project.eu 15

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

Materials Properties Browser Matertals Properties Browser

Materials Properties Browser

The Matertals Properties Browser dialog can be used to browse properties of matertals
stored In different public services, and in the Ginestra Matertals Library. The dialog can be
accessed through the €p Materials Properties Browser... button in the Ginestra toolbar,
or can be opened as a standalone application (the IM2D one, see Fig. 2.1 and 7).

L ‘When the Materials Properties Browser Is opened for the first tme, the only compo-
s —— P - ——— v nent visible will be the buttons bar at the bottom of the dialog. After dicking on the destred
service button, the corresponding service tab will appear, contatning the search and the
Pigure 2.5: The Detatl View tab showing the structure properties (notice the CIF viewer in the top- result panels.
left comer) The Materials Properties Browser allows opening multiple services tab at the same
tme.

. — . 2.1 Browser Overview
Pigure 2.6: Tensors tab navigator (aotice the copy button for each individual feld).

The Matertals Properties Browser 1s composed of 3 main sections:

1f supparted by the service (e.g. Materials Library), found structures can be edited in a
dedicated editor view (see Section 2.3) by either double-clicking with the MipoL: mouse — —
button the corresponding row, RiGuT-dicking a row and choosing the Edit menu ltem
from the contextual menu, or pressing the Edit button close to the View one.

2.2 Detail View
The detatl view will show all the avatlable properties and Information of the chosen struc-

ture. The shown data will vary depending on each service, but efforts were done to try
having as much consistency as possible between services.

In the top left the CIF viewer will be shown with its Dounload... and View... buttons. Pigare 2.1: Ginestra embedded (left) and standalone IMZD (right) versioas of the Materials Prop-
These buttons allow to download the CIF file to a user-selected directory, and to open the erties g Note th r ‘Butt bl 20 version
wiewer in a detached dialog. RiGiT-clicking In the CIF dedicated viewer will show various includes 3 mose avuilable

. plication.
display options.
16 sprbesd Materas Casfrderstal Ver 122 sped 14,202 e 122 - Agetl 14 202 e Mustd Casberatl 13

Figure 7: Screenshots of the manual for IM2D graphical user interface copyrighted by AMAT.

7.2 ReadTheDocs for IM2D backend

ReadTheDocs has become one of the most popular documentation tools in OpenSource-
software development, since it provides a versioning system compatible with git and therefore
it can be easily managed, updated and deployed on the Fraunhofer Gitlab platform. At the
moment, the documentation for the IM2D backend services of SimPhoNy, AiiDA, QE and Siesta
is hosted under https://intersect.pages.fraunhofer.de/docs/ (see Figure 8) and managed by
the corresponding git repository [9] (see Figure 9). The documents are written in Markdown
and hence can very easily be exported as PDF or HTML. Furthermore, the integration of
JupyterNotebooks is trivial, so that the tutorials for interacting with the REST-API from the
TechCafé (organised on 29t of March 2022) can be included in the documentation on the fly.

At the time of this report, the documentation is only accessible for registered Fraunhofer
Gitlab-users. However, the documentation repository can easily be migrated to any other git-
host such as Github, which would be the case if the agiida-wrapper repository would be moved
to public Github as well.

It is worth noticing that the process of writing the documentation is a continuous process.
Hence, the content is evolving in time and might be incomplete until new issues or missing
information are reported.

www.intersect-project.eu 16

HORIZON2020 7
mgﬁg ** **
ZANTERSECT IR
Deliverable D1.7 o0 % *
8)3 * 4 K

Internal check tests and IM2D documentation

INTERSECT
»IM2D docs View page source

IM2D docs
Welcome to the INTERSECT documentation for IM2D!

Here you will find all the information regarding the Interoperable Material-to-Device simulation tool

5 box.
Installation

Objectives of INTERSECT
IM2D documentation Installation Tutorials

IM2D simulation box description

IM2D features Multi-step installation guide Introduction to the IM2D REST API.

Install IM2D! Jump to the tutorial

Tutorial: Introduction

Tutorial: Syntactic interoperability

Tutorial: Semantic interoperability Documentation
IM2D simulation box description.

Read the docs

Figure 8: Index page of the IM2D documentation under https://intersect.pages.fraunhofer.de/docs.

D docs & A~ || tstar|o]| % Fork 0
Project ID: 29553 [{

-0-40 Commits ¥ 1Branch ¢ 0Tags [3) 12.3 MBFiles [408.1 MB Storage

Documentation for IM2D

main docs / | + v History Find file Web IDE & v

145, change header color in navigation bar @ cof207F1 | B
-22% Matthias Buschelberger authored 1 minute ago

Add CHANGELOG Add CONTRIBUTING

&, Upload File | | [F) README | | [@) CI/CD configuration

Name Last commit Last update
Badocs change header color in navigation bar 1 minute ago
& .dockerignore Initial commit 1 month ago
< .gitignore Initial commit 1 month ago
& gitlab-ciyml Use custom Cl base image 1 month ago
M+ README.md Initial commit 1 month ago
& local_build.Dockerfile Initial commit 1 month ago
@ packageinfo.py Initial commit 1 month ago
& requirements.txt Initial commit 1 month ago
& setup.py Initial commit 1 month ago

Figure 9: Fraunhofer Gitlab repository for managing the content of the documentation under https://qitlab.cc-
asp.fraunhofer.de/intersect/docs.

www.intersect-project.eu 17

HORIZON2020

Deliverable D1.7

Internal check tests and IM2D documentation

7.2.1 Installation guide

-

One of the most important contents of the documentation is the installation guide for the
backend services of IM2D, which are the main drivers of the simulations and workflows, as well
as the source of data and knowledge for each workflow and its input/output data. As shown in
Figure 10, the guide reports the software-requisites expected on the host system and the
associated versions for which the app was tested.

Furthermore, each step for the cloning of the aiida-wrapper repository, configuration and
execution of the Docker-containers is explained with code snippets for the terminal.
Depending on the operating system, different notes and warnings for troubleshooting were
added to the single steps as shown in Figure 11.

INTERSECT

Search docs

B Installation
Prerequisites

Step 1: cloning the repository from
Fraunhofer Gitlab

Step 02: Make secrets
Step 03: Starting the app
Step 04 updating the app
Step 05 Clean-up
Objectives of INTERSECT
IM2D documentation

IM2D simulation box description

IM2D features

@ » Installation View page source

Installation

Prerequisites

We provide a full an automated installation via Docker, which has been tested under Windows 10
and a small set of Linux distributions.

Since all components are modular and exchangable, we considered to setup a Docker Compose file,

in order to let the administration of the application handle which component he would like to plug
in to the network and which service shall be contacted externally (e.g. QE & Siesta on a cluster,
Postgres database running on an external server).

« You have either the choice to:
o pull the related images from the Docker registry from Gitlab (recommended)
o or build the images locally from scratch (not recommended - time consuming)

In all cases, we tested it through a Docker Engine version . If you face any other versions having
problems, please do not hesitate to contact us.

« What you will need in all cases:
o A Docker engine up and running (at least v2e.10.7)
o git (at least 2.25.0)
o a bash shell which can access the executables both exetucables (also git-bash on Windows

Figure 10: Explanation of prerequisites for IM2D installation.

www.intersect-project.eu

18

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

INTERSECT cd ./aiida-wrapper

Fetch the ontology submodule:

git submodule update --init --recursive im2d-electronic-calculations/

« If you are on a Linux-machine, you might run the following command:
O Installation

Prerequisites o This makes the bash-scripts executable for the container-entrypoints.

Step 1: cloning the repository from « If you are on a Windows-machine, please run the following command:

Fraunhofer Gitlab -/prep for_windows_f
o This ensures that the line-endings of the bash-scripts were not changes while cloning it

Step 02: Make secrets
to the filesystem of Windows.
Step 03: Starting the app

Step 04 updating the app
Step 05 Clean-up Step 02: Make secrets

Objectives of INTERSECT

Under the directory .docker/secrets , there are txt -files which need to be filled with secrets. These
IM2D documentation are all in all:
IM2D simulation box description
IM2D features « Passwords and usernames of the postgres-database

« Passwords and usernames of the Allegrograph-triplestore
« Client-ID and Client-Secret for the MarketPlace (not needed for local deployment)

Tutorial: Introduction « SSH-keys for running QE/Siesta on a remote computer
Tutorial: Syntactic interoperabilit .
U & Y Either, you can fill those secret-files manually and add the ssh-key pair on your own.
Tutorial: Semantic interoperability

ssh-keys MUST be named id_rsa and id_rsa.pub , and shall not require any password!

Or you can add randomly generated secrets and ssh-keys by the following command:

in
n
=

./make_secrets.

This command will launch a temporary Docker container container which is executing a script

for writing random secrets into the .docker/secrets -directory. Depending on your shell, there

might be unexpected error during this execution.

Figure 11: Screenshot of the installation steps with suggestions for troubleshooting.

7.2.2 Description of properties, functionalities and ontologies

Technical description of IM2D architecture, GUI visualisation tool, and information about the
project background (such as the participating consortium partners and the project objectives)
were included in separate sections (Figure 12).

www.intersect-project.eu 19

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

INTERSECT Components

The figure below shows a schematic overview of the IM2D components and their contribution to
the IM2D simulation box: The graphical user interface (GUI), the semantic and syntactic workflow
managers provided by SimPhoNy and AiiDA, respectively, the data hub, as well as the simulation
hub consisting of the modelling and calculation services Quantum Espresso (QE) and Siesta.

USER
Installation IM2D box ‘ GUI
o G
Objectives of INTERSECT ey, Simulation
GUI services (SimPhoNy "a.
IM2D documentation remote and native GUI) "’e.,cu hub
4
O IM2D simulation box description Ginestra™

SimPhoNy |

Semantic interfaces E
Interoperability Data hub for design workflow Q
(ontology-based)

Components

IM2D features
SIESTA

| AliDA

Data management | Modelling and calculation
Tutorial: Introduction services services

Tutorial: Syntactic interoperability
Tutorial: Semantic interoperability Components of the IM2D simulation box.

Graphical user interface:

« The Ginestra® GUI is the front-end of the IM2D platform, through which the software end user
interacts with the resources and workflows provided by the REST APIs of SimPhoNy and AiiDA.
The interface has a intuitive and user-friendly structure based on an operation menu, buttons
for the connection with the other parts of the infrastructure (e.g., AiiDA), and windows for the
visualization of 3D structures and material properties/parameters. It represents the Ginestra®-
AiiDA plugin front-end and allows the semantic definition of different user profiles (explained in
Chapter 3.2).

« Via pipelines the GUI provides a seamless integration of AiiDA, Ginestra®, and SimPhoNy;, as
well as the access to the data hub through the OPTIMADE API, as shown below.

« For more information, have a look at the INTERSECT deliverables D1.5 - GUI design and setup
and D1.6 - GUI deployment.

Figure 12: Overview of the software architecture of IM2D and the role of the graphical user interface.

The subsequent paragraphs of the guide, describes the semantic interoperability architecture
of IM2D by referencing the corresponding HTTP-queries and triggering the dedicated SPARQL-
queries for the ontology through SimPhoNy. Additionally, interoperability for the submission
of jobs directly through syntactic data (in JSON-serialisation) or semantic data (JSON-LD-
serialisation of CUDS) is discussed by the model of the interoperability layer (Figure 13).

Furthermore, the distinction between the generic domain-ontology concepts of EMMO-
crystallography and the mapping to the application-related concepts of IM2D, internally used
by the aiida-wrapper, is covered in the text (Figure 14). Visualised with screenshots of Protégé,
this fosters the understanding of (i) how the interface of SimPhoNy and AiiDA facilitates the
knowledge graph in order to semantically describe the properties that are computed through
the available workflows, (ii) how the inputs are filtered by SimPhoNy for different persona, and
(iii) how the mapping to the data resources in the AiiDA-backend is achieved.

www.intersect-project.eu 20

HORIZON2020

Deliverable D1.7

Internal check tests and IM2D documentation

INTERSECT

Installation
Objectives of INTERSECT

IM2D documentation

2 IM2D simulation box description
Components
Interoperability

IM2D features

Tutorial: Introduction
Tutorial: Syntactic interoperability

Tutorial: Semantic interoperability

Example: GET-method

A nice example to demonstrate IM2D interoperability is the GET-method. The GET-method
includes exchange of semantic and syntatic data between the GUI, SimPhoNy, AllegroGraph (a
triple store), the ontology. In general, the first task that SimPhoNy has to handle when a user
connects to the GUI is to supply selectable user profiles: basic, intermediate, and advanced. The
individual requirements for each of the three user types differ depending on each expertise level
(“Knowlege”), wich is realized through the control of technical input parameters that affect the
accuracy of the results (e.g. energy cutoffs, number of K-points, convergence thresholds, etc.). So, in
the GUI, the user selects his/her user profile and enters the name of a material property of interest.
Both conditions are embedded into an http-route in the following format:

« localhost:8000/api/v4/intersect/properties/my-property-of-interest/inputs/my-user-level
When this route is taken via GET-method in the SimPhoNy-REST service, the OSP-core sends a

SPARQL-query to the AllegroGraph triple store, where ontology-based concepts are stored as
triples.

Query forwarding
,' I ,_“ ardin . 3 AllegroGraph)
GET-method - Wrapper

S o'

/ \ [cuos]

[OSP- \7 f
‘05"4"“’” \ Core /r |
— N =
- GuI - 4—«[!:&“ AFI/ Ontology
I / ol
Ut (GINESTRA® - Au:)Amepef]

Placeholder: Query forwarding via GET-method: In the GUI, the user selects a user level and the material
property of interest, e.g., the bandgap energy. The GUI sends a query to SimPhoNy to get a list of
properties that are required as input parameters for the calculation of the demanded material property.
The REST-API triggers the OSP-core to filter the required parameters from the ontology (saved in
AllegroGraph as triples). From the ontology, CUDS objects are generated, carrying the semantic
information of the query parameters. On the way back to the GUI, the semantic data is converted to
syntactic data and the user receives a profile-dependent set of parameters required for the calculation of
the bandgap energy.

The SPARQL-query is dynamically adjusted with respect to the specified user profile and AiiDA-
workflow and gets a set of required parameters as a response, along with recommendation values
and information about the data range-restrictions, data type-restrictions, unit-descriptions, unit-
expressions and additional user advices such as further reading references. These are then
transferred back as http-response from the SimPhony-REST API to the GUIL. Some of the strings in
this response, e.g. units and physical dimensions, are implemented in latex-syntax so to be
displayed in the GUI. At this point, it is suitable to mention that the ontology carries all

provides an example for the ontological representation of material parameters in Protégé. On the
one hand, it shows the distinction between the generic and application-related IM2D class and, on
the other hand, how the corresponding IM2D class is restricted to certain workchains, user
expertise ("Knowloedge"), and AiiDA-related inputs.

Figure 13: Explanation of the semantic interoperability for getting input information for a certain workflow and user-level.
Figure originating from D2.5 (Semantic interoperability of the automated workflows through SimPhoNy).

In the near future, this section will be further extended in order to deliver the knowledge on
how to expand the collection of properties in IM2D to new codes and models. In particular,
this should enable future IM2D developers to include new AiiDA-workflows via the IM2D-
ontology, add new input parameters or even add new persona levels.

www.intersect-project.eu 21

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

JivrersecT [

Generic class: IM2D class:
INTERSECT
WavefunctionKineticEnergyCutoff IM2DEcutifc
Class Annotations Class Usage Cass Annotations Class Usage

functionKineticEnergy Cuton IM2DEcutwic

cutoff for
“gieg the

apifvd/

T-malkthrough. sat ecutwfc

$.data.atributes. valu

Installation

Objectives of INTERSECT

only (hasNumericalData on

ly RydtergUnitort

IM2D documentation

= IM2D simulation box description

Components sRequired only (hasNumericalData value faise)

Interoperability
IM2D features Screenshot of the class properties for the respresentation of the concept “wavefunction kinetic energy
cutoff”. implemented in Protégé and expressed through OWL description logic.
Figure 14: Introduction to the ontologisation of the concepts and workflows facilitated in IM2D by coding examples in
Protégé.

7.2.3 User tutorials

In order to provide code examples for a deeper understanding of the interoperability managed
via the REST-API, a small set of JupyterNotebooks was included in the documentation (Figure
15). These show Python-code examples that use the OSP-core package, the EMMO, and the
DCAT-, and IM2D-ontologies to interact with the available workflows, both syntactically and
semantically. The corresponding REST-server required for IM2D can therefore be accessed
either on the localhost (when IM2D is launched on a local machine) or on a remote server (such
as the MarketPlace).

www.intersect-project.eu 22

HORIZON2020

On
O

Deliverable D1.7
Internal check tests and IM2D documentation

INTERSECT

INTERSECT

Now, create some CUDS-object and do the mapping with dcat and emmo!

ed types/applicati)
stru
Installation
EnergyCutOff()
Objectives of INTERSECT url}?jsonpath=3$.data.attributes.wfc")
Type)
IM2D documentation c.add(rec, rel=dcat2.downloadURL)
IM2D simulation box description rho = emmo.ChargebensityKinetictn
IM2D features ath=$.data.attributes.rho
rho.add(rec, rel=dcat2.downloadURL)
Tutorial: Introduction emmo.OrdinaryGaussianSpreading()
Tutorial: Syntactic interoperability [& <dcat.Resource: http://localhost:8800/api/va/nodes/03aeb57b-6a8a-49ca-959c-c1182533F9F7/co
Tutorial: Semantic interoperability %
Now let us submit push the CUDS in order to calculate band gap:
from osp.core.utils.general import (
_serialize_session_json, _deserialize_cuds_object
essio
id CEET: as ca- 1182 f
url = f"http://localhost:808@/api/va/intersect/cuds/{uid}"
headers = {"accept": "application/ld+json"}
response = requests.get(f"{url_cuds}/{status_uid}", headers=headers)
cuds = _deserialize_cuds_object(response.json)

Figure 15: Code snippets for the computation of a band gap through QE, taken from the tutorials for teaching semantic
interoperability on the IM2D documentation.

7.3 Swagger Ul

The Swagger Ul is a novel type of documentation of REST-APIs and was introduced by
SmartBear Software Inc. By the simple provision of an openAPIl-yaml-file (which had already
been implemented for IM2D in D1.6 — GUI deployment), a compatible Python-package (like
Flasgger) can interpret this markup-file and automatically generate a graphical interface. This
interface exhibits all potential routes of a REST-service to be approached. Furthermore, it
specifies which kind of data types are allowed as potential variables and inputs for certain
parameters in the URL, keyword arguments in the HTTP-query, or serialisations in the HTTP-
body. Additionally, the user is able to directly interact and test the endpoints with given

www.intersect-project.eu 23

HORIZON2020 3 I
owmg T T * *
Deliverable D1.7 i * *
2.0 * % *

Internal check tests and IM2D documentation

examples in any common web-browser without the need to enter a separate programming
environment (see https://app3.materials-data.space as examples for IM2D hosted on the
MarketPlace). Moreover, an equivalent cURL-command is generated, which can directly be
used in any Linux-command line. The possible output formats are displayed with examples as
well. Figure 16 shows a screenshot of some of the available HTTP-endpoints of the IM2D app
visualised through the Swagger Ul.

Overall, a Swagger Ul offers the opportunity for any software developer to directly inspect the
backend services of the IM2D-application and directly integrate its capabilities into their own
application — regardless of the driving programming language.
&= C O D localhost:7000/# D =
GET /api/v4/intersect/cuds/{id} getCudsDataset
POST /api/v4/intersect/nodes/create/{dtype} createDataset

GET /api/v4/intersect/properties/{workflow}/inputs/{level} getMetadata

Get metadata and requirements of workflow inputs

Name Description

workflow * reavired [band_gap.pw o]
string

(path)

level * reauired [basic .]

string
(path)

structure

e structure

(query)

Figure 16: Screenshot of some of the available HTTP-endpoints of the IM2D app visualised through the Swagger-Ul. The fields
of "workflow" and "level" are variables in the URL which can be replaced with different options for a workflow to be run and
with the user level to be chosen. The dropdown-menus exhibit all available options for those variables. The return of this
HTTP-request is a JSON-file holding all potential input parameters of a certain workflow the user may adjust for a demanded
user level. The field “structure” is a placeholder for a material-UUID for which the user wants to have a recommendation for
default input values for different simulation accuracies. The URL from this REST-endpoint is then appended to the specified
host the application is running on [10] and can be used by any third-party-tool such as the GUI.

For the case of semantic data, the programmer is able to download CUDS-objects as output of
the simulation in any common serialisation format (TTL/OWL/JSON-LD) and to directly
integrate it into any third-party tool by using ontologies (e.g., other SimPhoNy-wrappers,
Protégé, WebVOWL, etc.).

Furthermore, SPARQL-queries can be inserted manually at a separate route in order to
semantically explore the available data for certain materials and properties defined by the
EMMO-ontologies (see Figure 17). In case of a non-SPARQL-user, the programmer can also
search individuals of a specific property for the specific EMMO-UUIDs of an ontology-class (e.g.,
EMMO_b2f5be57-53bb-4971-8365-681cc2024a47 for the band gap) or search by the
associated label of that class (e.g., BandGap, UnitCell, etc.).

www.intersect-project.eu 24

HORIZON2020 %
&3?9 ** **
ZANTERSECT IR
Deliverable D1.7 o0 % *
813 * gy K

Internal check tests and IM2D documentation

Curl

curl -X GET "https://app3.materials-data.space/api/vd/intersect/cuds/eb5bl5ee-6486-43ad-87ed-75b840£75abc?func=json_1d" -H "accept: application/json"

Request URL

https://app3.materials-data.space/api/vd/intersect/cuds/ebSbl5ee-6486-43ad-87ed-75b840£75abc’

server response

Code Details

200 Response body

04-5e£8-4acd-b367-a48bb5£8495b" ,
mmo : EMMO_062de9d1_4dde 479 816d ffaeddB0ch45"

507898-1d77-4bb2-85e£-8£d8c81175cc"
EMMO_95de569f-e£60-40ef-Beed-8685edcaefab™ ,

486-43a4-87e4-75b840£75abe"

5b15ee-6486-43ad-87ed-75b840£75abe"
EMMO_79c5bbE6_7429_44c6_a70d 0d3c461b6375",
a 9019 4537 acdl 80b0£b563d41": {

:c£507898-1d77-4bb2-85ef-8£dBc81175¢cc

{
4ac4-b367-ad48bb5£8495b"

Figure 17: Examples for a response when the Swagger Ul is used for querying for a specific CUDS (here: eb5b15ee-6486-43a4-
87e4-75b840f75abc for the unit cell of silicon). The upper window shows the corresponding cURL-command and the lower
window the TTL-file serialisation which can be downloaded directly and used by any other third-party tool.

Conclusion and outlook

Considering the development activities for the source code of the IM2D toolbox, we put in
place a set of modern technologies, such as git and its supporting tools like Cl/CD-pipelines, for
testing the code stability and ReadTheDocs documentation.

The repositories involved in the IM2D simulation box are hosted on the private Fraunhofer
Gitlab and public Github. Since the versioning is related to the docker registry, the
reproducibility of previous code variations is guaranteed. The pipelines are supported by
different stages of unit tests, which check the range from basic functionalities of the REST API
up to the performance of a whole workflow simulating material properties like the band gap.
The documentation for the backend services of AiiDA and SimPhoNy comprises a broad range
of contents, covering the installation guide, the description of the app architecture and the
user tutorials for the REST APIl. The REST API itself is documented through the openAPI-
specification that produces an interactive Swagger Ul that can be used to explore all possible
entry points and routes of the HTTP server.

The documentation for the corresponding GUI is available separately from the ReadTheDocs-
pages in the form of a PDF and can be obtained by contacting the AMAT customer service or
the INTERSECT coordination directly.

www.intersect-project.eu 25

HORIZON2020 3 I
owmg T T * *
Deliverable D1.7 i * *
2.0 * % *

Internal check tests and IM2D documentation

Potential future development steps may include further descriptions for the testing and/or the
implementation of advanced configurations in the official documentation. This may, e.g.,
incorporate a possible scaling of the app components to other databases and triplestores, or
connecting the workflow management of AiiDA to high-performance clusters or other
associated facilitations. Regarding the documentation, the description of the application- and
domain-ontologies need to be expanded so that further properties and workflows can be
added to the semantically interpreted workflows of SimPhoNy and AiiDA. This would also
enable the introduction of new input parameters, properties, workflows, and even new
persona profiles. On the other hand, also the docker-compose setup will be documented in
more detail so that an app-administrator is able to exchange single app components such as
the QE- and SIESTA-version or the triplestores and databases without further effort.

References and links

[1] https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/aiida-wrapper

[2] https://github.com/aiidateam/aiida-quantumespresso

[3] https://github.com/siesta-project/aiida_siesta plugin

[4] https://github.com/epfl-theos/aiida-defects

[5] https://github.com/aiidateam/aiida-pseudo

[6] https://gitlab.cc-asp.fraunhofer.de/intersect/ext to aiida

[7] https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/allegrograph-wrapper

[8] https://gitlab.cc-asp.fraunhofer.de/ontology/applications/intersect/im2d-electronic-calculations
[9] https://gitlab.cc-asp.fraunhofer.de/intersect/docs

[10] localhost:7000/api/v4/intersect/properties/band_gap.pw/inputs/basic in case of a local
deployment or https://app3.materials-data.space/api/v4/intersect/properties/band gap.pw/
inputs/basic in case of the MarketPlace.

Acronyms

Cl — Continuous Integration

CD - Continuous Deployment

CUDS - Common Universal Data Structure

EMMO — European Material Modelling Ontology

GUI — Graphical User Interface

IM2D — Interoperable Materials-to-Device

REST API — Representational State Transfer Application Programming Interface
OSP — Open Simulation Platform

Ul — User Interface

www.intersect-project.eu 26

