

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 1

D1.7
Internal check tests and IM2D documentation

Matthias Büschelberger, Kathrin Frei, Matteo Bertocchi, Claudio Rosati, and
Arrigo Calzolari

Ref. Ares(2022)3321487 - 29/04/2022

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 2

Document information

Project acronym: INTERSECT
Project full title: Interoperable Material-to-Device simulation box for

disruptive electronics
Research Action Project type: Accelerating the uptake of materials modelling software

(IA)
EC Grant agreement no.: 814487
Project starting / end date: 1st January 2019 (M1) / 30th April 2022 (M40)
Website: www.intersect-project.eu
Final version: 29/04/2022

Deliverable No.: D1.7
Responsible participant: Fraunhofer (participant number 5)
Contributing Consortium members: AMAT, CNR

Due date of deliverable: 30/04/2022
Actual submission date: 29/04/2022
Dissemination level: PU - Public

Authors: Matthias Büschelberger, Kathrin Frei, Matteo Bertocchi,
Claudio Rosati & Arrigo Calzolari.

To be cited as: M. Büschelberger, K. Frei, M. Bertocchi, C. Rosati, and A.
Calzolari (2022): Internal check tests and IM2D
documentation (final version as of 29/04/2022). EC grant
agreement no: 814487, Fraunhofer Gesellschaft Zur
Foerderung Der Angewandten Forschung E.V., Freiburg,
DE.

Disclaimer:

This document’s contents are not intended to replace consultation of any applicable legal sources or
the necessary advice of a legal expert, where appropriate. All information in this document is provided
"as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The
user, therefore, uses the information at its sole risk and liability. For the avoidance of all doubts, the
European Commission has no liability in respect of this document, which is merely representing the
authors' view.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 3

Versioning and Contribution History

 Version Date Modified by Modification reason

v.01 21/04/2022 Matthias
Büschelberger

First version

v.02 29/04/2022 Arrigo Calzolari Final version

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 4

Contents

1. Executive Summary 5	
2. Description of the work done 5	
3. Deviation from planned work in the DoA 6	
4. Central repository, versioning system and development organisation of IM2D code 6	

4.1 Main repository and management of dependencies 6	
4.2 Dockerfiles 8	
4.3 Docker-registry, versioning and organisation of development 8	

5. Gitlab CI 11	
6. Unit tests 12	

6.1 Basic tests 13	
6.2 Advanced tests 13	
6.3 Advanced tests with Hubbard-U parameters 14	

7. IM2D documentation 15	
7.1 GUI manual 15	
7.2 ReadTheDocs for IM2D backend 16	

7.2.1 Installation guide 18	
7.2.2 Description of properties, functionalities and ontologies 19	
7.2.3 User tutorials 22	

7.3 Swagger UI 23	
Conclusion and outlook 25	
References and links 26	
Acronyms1 26	

1 Acronyms are marked in purple in the text and defined at the end of the document.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 5

1. Executive Summary

The content of this deliverable is related to Task T1.5 (Software engineering up to TRL7) and
describes in detail the current status of the IM2D code repositories and their dynamic links to
each other (Section 4), the implementation of the git-pipeline (Section 5), the unit tests created
to check the code functionality and stability (Section 6), and the IM2D documentation on the
REST-API and app architecture of the simulation box (Section 7). All the actions reported in this
deliverable define the quality of the development organisation, the reproducibility and the
maintainability of the IM2D codebase. Since there are no considerable deviations from the
planned work, the activities converge with common standards for quality assurance measures
in software development and, hence, build a solid fundament for future extensions and
improvements of the IM2D app without breaking the stability of previous versions.

2. Description of the work done

During the period M25-M40, Fraunhofer IWM has continuously worked on improvements of
the IM2D code on the Fraunhofer Gitlab as well as on automated tests for checking the code
stability, the code documentation for installation, code capabilities and code usage tutorials.
The latter was demonstrated during the Online TechCafé on March 29th 2022 (see D4.9), in
collaboration with EPFL and CNR colleagues.

All available versions of the IM2D code developed during the project have been virtualized
through Docker and are available as light-weighted virtual machines (containers) in the Docker
registry of the Fraunhofer Gitlab. This allows any registered user to easily download the related
containers on any individual local machine and run the application without installing and
configuring the code components from scratch. The advantages of this technology for the
IM2D framework were previously discussed in D1.62 (GUI deployment).

The actions described above boost the reproducibility, code quality, stability and
maintainability of the whole application.

According to the DoA, the T1.5 activities include:

a) Creation of a central code repository and versioning system
b) Organisation of software development
c) Definition and implementation of a testing protocol for each of the components of the

IM2D box, and of the interfaces, wrappers and plugins for interoperability
d) Construction of a battery of tests to feed the protocol defined above
e) Production of software documentation, including description of models, physical

equations and material relations; code architecture, installation and user guide, and
test execution examples.

2 https://intersect-project.eu/wp-content/uploads/2022/04/D1.6.pdf

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 6

In the course of this document, Section 4 (Central repository, versioning system and
development organization of IM2D) addresses the points (a) and (b); Section 5 (Gitlab CI)
discusses action (c); Section 6 (Unit tests) relates to activity (d); point (e) is described in Section
7 (IM2D documentation).

3. Deviation from planned work in the DoA

Although there are no considerable deviations from the planned actions, we report the
following aspects:

- The DoA proposed to include the detailed descriptions of the models, equations and
material relations which are used in the IM2D framework. However, since a large
collection of the workflows facilitated in AiiDA through the related plugins - such as,
e.g., AiiDA-Siesta and AiiDA-Quantum-Espresso - were developed independently of
IM2D, detailed descriptions of the underlying models and equations are not included
in the developed documentation. On the contrary, specific code documentation,
publications and INTERSECT-deliverables are linked and cited as needed. This also
applies to the descriptions pertaining to the models of SESTA and Quantum-Espresso
(QE) codes.

- Additionally, the consortium partners are discussing the publication of the app
components on Github. Therefore, the development system might not be continued on
the private Fraunhofer Gitlab but displaced on a public repository on Github.

4. Central repository, versioning system and development organisation of IM2D
code

4.1 Main repository and management of dependencies
At the time of submission of this deliverable, the main repository [1] includes all of the IM2D-
app components and is hosted on the Fraunhofer Gitlab. This repository, called aiida-wrapper,
contains the semantic interface of SimPhoNy and AiiDA as well as the SimPhoNy-REST API that
uses the wrapper in order to communicate with any HTTP-client, such as the IM2D GUI
developed in the project (see D1.6). A screenshot of the repository with its contents is
presented in Figure 1.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 7

Figure 1: Screenshot of the aiida-wrapper repository on the Fraunhofer Gitlab. The repository hosts the source code for the
semantic interfaces and the operating REST-API of SimPhoNy (“osp”-directory), the dynamically linked dependencies

(submodules: “aiida-defects”, “aiida-quantumespresso”, “aiida-pseudo”, etc), the implementations of the unit tests for code
stability (“tests”-directory) and the related Docker files- and configurations (“.docker”-directory).

The aiida-wrapper repository is dynamically linked (via git-submodules) to other git-
repositories such as the AiiDA-plugins of aiida-quantumespresso [2], aiida-siesta [3], aiida-
defects [4], aiida-pseudo [5], and aiida-post [6]. Other repositories, for example the
allegrograph-wrapper [7] (a SimPhoNy-interface to the triplestore-software of Allegrograph),
as well as the IM2D-ontology [8] based on EMMO (called im2d-electronic-calculations), are
included as submodules as well. Since most of the mentioned plugins are hosted on public
Github (exceptions: allegrograph-wrapper, aiida-post-plugin, im2d-electronic-calculations-
ontology), this dynamic linking of the dependencies assures a reproducibility and an easy

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 8

installation procedure of the whole IM2D-code from scratch, without statically including the
dependency source-code in the aiida-wrapper-repository. The linking functionality to
submodules is also guaranteed, in the case the repository is moved to another Git-host.
Additionally, submodules are pinned to certain versions/commits of the remote repository, so
that previous versions of the IM2D-code can be recovered, even if the dependency is updated.

Currently, the aiida-defects-plugin is privately available on Github; while allegrograph-
wrapper, aiida-post-plugin, and im2d-electronic-calculations-ontology are hosted on the
private Fraunhofer Gitlab. At the time of this report, a move of these repositories to public
Github is under discussion by the consortium.

4.2 Dockerfiles
Submodules are especially useful for building Docker-images, which provide a fast and easy
deployment on any arbitrary host-machine, such as production HPC servers or local systems.
The Docker and the Docker-compose files for the deployment of the IM2D app are included in
the aiida-wrapper-repository. The images for the virtual machines (called containers in Docker)
can be pushed and pulled from the Docker-registry of the Fraunhofer Gitlab. This allows the
user to access the images without building them from scratch: A potential user of the IM2D
box only needs to install Docker on the operating system, clone the aiida-wrapper repository
and pull the containers from the Docker-registry. Building the images from scratch should only
be considered when a new release of the app is published.

The installation guide is reported below in the IM2D documentation (see chapter 7 – IM2D
documentation). For further details about the deployment through Docker, see D1.6.

4.3 Docker-registry, versioning and organisation of development
The development of the application exploited the standard capabilities of the git-software-
development tool suite. This allows for parallel development on different branches of the
repository, without breaking stable versions of previous releases. Additionally, each release
features notes that describe the newest developments and the bugs fixed, with respect to
previous versions.

The commit-history, as shown in Figure 2, makes the changes in the code, among different
variants, recoverable and traceable. The Docker-images (Figure 3) of each release are
continuously pushed to the Docker-registry (see Figure 4) of the Fraunhofer-Gitlab.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 9

Figure 2: Release history with release notes of the aiida-wrapper plugin for SimPhoNy.

Bugs, feature requests or unexpected behaviours can be reported through the common usage
of issues on git and, therefore, can be related to ongoing developments and new releases.

The remaining functionalities of git that were not touched in this section are described in the
previous deliverable (D1.23 - Creation of code repository and versioning system).

3 https://intersect-project.eu/wp-content/uploads/2022/04/D1.2.pdf

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 10

Figure 3: Overview of Docker-images of each IM2D-release on the Docker-registry of the Fraunhofer Gitlab. The AiiDA-,
Quantum-Espresso-, and Siesta-images are also hosted on this platform but are not displayed in this figure.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 11

Figure 4: List of the most recent pipelines for the aiida-wrapper repository.

5. Gitlab CI

The continuous integration (CI) on Gitlab is a standardised process that can be fully managed
by a markup file written in yaml-format. This specification triggers a pipeline of Docker-
containers, which execute a suite of tests every time a commit has been pushed to the aiida-
wrapper-repository. Each pipeline process and its attributes (e.g., commit, duration, etc.), are
stored and available on the respective Gitlab repository, as shown in Figure 5. This assures a
protocol for tracing changes in the codebase, whether new features run as expected, and
whether all functionalities of the application still work or whether the new changes broke pre-
existing capabilities.

Figure 5: Example of a failed pipeline for a certain commit due to bad code style.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 12

The Docker-images for the AllegroGraph-software are pulled from the public Dockerhub. The
same also holds for the postgres-database used by AiiDA. The Docker containers hosting AiiDA,
QE and Siesta are run from the pre-existing images from the Fraunhofer Gitlab Docker-registry.
On the other hand, the SimPhoNy-container (which only comprises the source code of the
aiida-wrapper-repository) is entirely rebuilt for testing the implementations within the
pipeline. The rebuilding includes the installation of OSP-core and the allegrograph-wrapper as
well as the installation of the im2d-electronic-calculations- ontology in OSP-core and the setup
of the databases on AllegroGraph.

After rebuilding is completed, a set of checks for the code style and a variety of unit tests for
the simulation box are run within the SimPhoNy-container. In case of a test failure, the
underlying protocol of the Gitlab pipeline raises an error and also forwards the traceback of
this exception towards the code-maintainer. Since the pipeline can be automatically repeated
in fixed intervals without pushing any new commits, this functionality represents the most
suitable technology for assuring the long-time stability of the IM2D app and all of its
components. The tests are further explained in Section 6 (Unit tests).

If the repositories will be moved to public Github, the protocol has to be translated into the
format of the new platform, because the yaml-specifications between Gitlab and Github are
not mutually compatible.

6. Unit tests

Unit tests are standard procedures in software development in order to provide a self-
controlled mechanism to verify that the developed functionalities of the codebase return the
data expected in specific data types, serialisation formats and accuracies. They react very
sensitively to any small change or error in the code and detect even very slight differences in
the data returned by the software. Since unit tests can be executed automatically and repeated
infinitely, they represent a key technology for code stability and are easily applicable for CI/CD
(see Section 5 - Gitlab CI).

Due to the complexity of the overall IM2D simulation box, the unit tests were categorised into
basic, which succeed after a short period of time, and advanced, which can take up to one hour
since they run several workflows in AiiDA, trigger simulations in QE and SIESTA for a standard
material, and compare the output of the executed simulations with expected values. All of
these tests run fully automatically and independently from the action of the software
developer.

Additionally, separate tests were implemented for applying the Hubbard-U parameters of QE
to the AiiDA-workflows. Since these parameters were added very recently to the advanced

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 13

user profile (persona D1.14) of the simulation box, at present they are separated from the
common advanced tests, which deliver more stable results. Finally, they will be integrated into
the entire suite of tests.

6.1 Basic tests
The translation between the syntactic and semantic data is one of the main functionalities of
the aiida-wrapper and represents one potential source of error for a failed workflow. The basic
unit tests for the aiida-wrapper repository check the conversion of semantic CUDS (ontology
individuals representing materials entities and simulation in/output specifications – see D1.35
and D2.56) into the syntactic JSON data to be submitted to the AiiDA-REST API. In order to make
the test more streamlined, the simulation is mocked and dummy data is returned, so that the
back-and-forth conversion of CUDS can be tested efficiently.

Additionally, the forwarding of the information about the high-level requirements for each
persona (ergo: “which are the inputs for a certain workflow?” for each user profile) through
the REST–API of SimPhoNy is tested. The SPARQL-queries retrieve information through the
allegrograph-wrapper from the ontology-classes deployed at the AllegroGraph triplestore. The
result holds input information such as the related ontology-class-IRI of a physical quantity, its
atomic units, its physical dimensions, further-reading-suggestions and its expected data-types
(see D2.5). This functionality needs to be tested continuously when the ontology is maintained
since it is crucial information to be parsed by the GUI. Small changes in the formatting returned
by the REST-service may cause erroneous displaying in the GUI.

Furthermore, the functionality of forwarding recommendations for different simulation
accuracies for these input parameters is tested for a standard material (silicon). This type of
unit test is essential because the response coming from the REST-API must be correctly
processed by the GUI and the implementation is a complex mix of a SPARQL-query towards
the AllegroGraph triplestore for the given persona-input and an http-query for a QE-protocol
to the AiiDA-container.

6.2 Advanced tests
As mentioned above, advanced unit tests trigger workflows in AiiDA for the computation of
material properties (such as the band gap, band structure, dielectric constant, effective mass,
etc.) by running simulations in QE and SIESTA. Each computation runs on low accuracy and a
standard material (silicon) for roughly 15 minutes. A tolerated deviation for the returned
values, e.g., of the band gap calculated by AiiDA, is currently 1e-13 eV. Nevertheless, it has to
be stressed that this test is conceived only for assuring software stability, not for validating the
feasibility of the returned values.

4 https://intersect-project.eu/wp-content/uploads/2022/04/D1.1.pdf
5 https://intersect-project.eu/wp-content/uploads/2022/04/D1.3.pdf
6 https://intersect-project.eu/wp-content/uploads/2022/04/D2.5.pdf

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 14

Advanced unit tests are executed for three different user profiles (basic, intermediate and
advanced) and different serialisation formats (JSON for direct syntactic input or JSON-LD for
semantic data from CUDS). Thus, a high duration of the whole pipeline process can be
reasonably expected. Therefore, we decided to separate these advanced tests from the basic
unit tests, so that only basic tests are triggered in the Gitlab pipeline for each commit, but
advanced tests are solely executed on merge requests and commits to the master branch. A
code snippet of such a unit test is shown in Figure 6.

Figure 6: Code snippet from an advanced unit test for a basic workflow of the band gap, effective mass and relaxed energy of
silicon. Variables in the lines 31-33 are values normally returned by AiiDA for a fast computation. The values have not been
validated; they are only used as a reference for software stability. This test has been consecutively executed with success in

the latest development stages with a tolerated deviation of 1e-13 for each value.

6.3 Advanced tests with Hubbard-U parameters
In the last part of the project, new parameters, such as the Hubbard-U, were added for the
advanced persona profile. Since the simulations do not currently return stable results, the
corresponding unit tests are separate from those mentioned in Sections 6.1 and 6.2, and are
therefore not contained in the Gitlab pipeline at present. The success of the computation
depends on the parameterization of the inputs, the pseudo-potentials used by AiiDA, and the
version of QE used by AiiDA. Potential materials to test these parameters are WO3 and ZnO.
The workflow for using the Hubbard-U parameters of QE needs to be fine-tuned in order to
assure the stability of the simulation results. At present, the band gap-workchains in AiiDA
trigger a relaxation by default before a band-structure calculation run is executed in QE. This
changes the distribution of the atoms in the unit cell and, consequently, the symmetry of the
structure. In order to successfully and reasonably apply the Hubbard-U parameters in the IM2D

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 15

simulation box, the workflows have to be modified to make a relaxation optional when the
input material is considered to be already relaxed.

7. IM2D documentation

The manuals and documentation for the IM2D simulation toolbox are split into the following
components:

- the user manual of the GUI,
- the documentation of the backend services of SimPhoNy and AiiDA,
- the documentation of the REST-API through the Swagger user interface (UI).

The user manual of the GUI is a PDF-document provided by AMAT, which provides a detailed
description for end users about the graphical frontend and its main operation instructions
(Figure 7). The documentation of the backend services is a ReadTheDocs-page provided by
Fraunhofer and focuses on the toolbox capabilities and functionalities. The IM2D ontology and
the app architecture are also described in the manual, along with the installation guide and the
tutorials for the REST-API of IM2D. The documentation of the REST-API through the Swagger
UI, a graphical interface used as an index page for the IM2D REST-API, reports on all available
endpoints of the Flask-server used by SimPhoNy.

7.1 GUI manual
The GUI software and the related manual for the IM2D box can be requested by contacting the
INTERSECT coordinator (intersect@nano.cnr.it) or the AMAT customer service.

As already stated in D1.6 (GUI deployment), the graphical user interface, which was specifically
developed for the IM2D toolbox, is copyrighted by AMAT and hence it is a proprietary software.
This leads to a separation between the documentation of the GUI and the backend services of
SimPhoNy & AiiDA.

The user guide for the IM2D frontend describes how the user interface is organised, how the
different plugins (AiiDA, SimPhoNy, Optimade) can be accessed, and how they can be
configured. The manual also contains a detailed description of all the available features and
operations.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 16

Figure 7: Screenshots of the manual for IM2D graphical user interface copyrighted by AMAT.

7.2 ReadTheDocs for IM2D backend
ReadTheDocs has become one of the most popular documentation tools in OpenSource-
software development, since it provides a versioning system compatible with git and therefore
it can be easily managed, updated and deployed on the Fraunhofer Gitlab platform. At the
moment, the documentation for the IM2D backend services of SimPhoNy, AiiDA, QE and Siesta
is hosted under https://intersect.pages.fraunhofer.de/docs/ (see Figure 8) and managed by
the corresponding git repository [9] (see Figure 9). The documents are written in Markdown
and hence can very easily be exported as PDF or HTML. Furthermore, the integration of
JupyterNotebooks is trivial, so that the tutorials for interacting with the REST-API from the
TechCafé (organised on 29th of March 2022) can be included in the documentation on the fly.

At the time of this report, the documentation is only accessible for registered Fraunhofer
Gitlab-users. However, the documentation repository can easily be migrated to any other git-
host such as Github, which would be the case if the aiida-wrapper repository would be moved
to public Github as well.

It is worth noticing that the process of writing the documentation is a continuous process.
Hence, the content is evolving in time and might be incomplete until new issues or missing
information are reported.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 17

Figure 8: Index page of the IM2D documentation under https://intersect.pages.fraunhofer.de/docs.

Figure 9: Fraunhofer Gitlab repository for managing the content of the documentation under https://gitlab.cc-
asp.fraunhofer.de/intersect/docs.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 18

7.2.1 Installation guide

One of the most important contents of the documentation is the installation guide for the
backend services of IM2D, which are the main drivers of the simulations and workflows, as well
as the source of data and knowledge for each workflow and its input/output data. As shown in
Figure 10, the guide reports the software-requisites expected on the host system and the
associated versions for which the app was tested.

Furthermore, each step for the cloning of the aiida-wrapper repository, configuration and
execution of the Docker-containers is explained with code snippets for the terminal.
Depending on the operating system, different notes and warnings for troubleshooting were
added to the single steps as shown in Figure 11.

Figure 10: Explanation of prerequisites for IM2D installation.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 19

Figure 11: Screenshot of the installation steps with suggestions for troubleshooting.

7.2.2 Description of properties, functionalities and ontologies

Technical description of IM2D architecture, GUI visualisation tool, and information about the
project background (such as the participating consortium partners and the project objectives)
were included in separate sections (Figure 12).

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 20

Figure 12: Overview of the software architecture of IM2D and the role of the graphical user interface.

The subsequent paragraphs of the guide, describes the semantic interoperability architecture
of IM2D by referencing the corresponding HTTP-queries and triggering the dedicated SPARQL-
queries for the ontology through SimPhoNy. Additionally, interoperability for the submission
of jobs directly through syntactic data (in JSON-serialisation) or semantic data (JSON-LD-
serialisation of CUDS) is discussed by the model of the interoperability layer (Figure 13).

Furthermore, the distinction between the generic domain-ontology concepts of EMMO-
crystallography and the mapping to the application-related concepts of IM2D, internally used
by the aiida-wrapper, is covered in the text (Figure 14). Visualised with screenshots of Protégé,
this fosters the understanding of (i) how the interface of SimPhoNy and AiiDA facilitates the
knowledge graph in order to semantically describe the properties that are computed through
the available workflows, (ii) how the inputs are filtered by SimPhoNy for different persona, and
(iii) how the mapping to the data resources in the AiiDA-backend is achieved.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 21

Figure 13: Explanation of the semantic interoperability for getting input information for a certain workflow and user-level.
Figure originating from D2.5 (Semantic interoperability of the automated workflows through SimPhoNy).

In the near future, this section will be further extended in order to deliver the knowledge on
how to expand the collection of properties in IM2D to new codes and models. In particular,
this should enable future IM2D developers to include new AiiDA-workflows via the IM2D-
ontology, add new input parameters or even add new persona levels.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 22

Figure 14: Introduction to the ontologisation of the concepts and workflows facilitated in IM2D by coding examples in
Protégé.

7.2.3 User tutorials

In order to provide code examples for a deeper understanding of the interoperability managed
via the REST-API, a small set of JupyterNotebooks was included in the documentation (Figure
15). These show Python-code examples that use the OSP-core package, the EMMO, and the
DCAT-, and IM2D-ontologies to interact with the available workflows, both syntactically and
semantically. The corresponding REST-server required for IM2D can therefore be accessed
either on the localhost (when IM2D is launched on a local machine) or on a remote server (such
as the MarketPlace).

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 23

Figure 15: Code snippets for the computation of a band gap through QE, taken from the tutorials for teaching semantic
interoperability on the IM2D documentation.

7.3 Swagger UI
The Swagger UI is a novel type of documentation of REST-APIs and was introduced by
SmartBear Software Inc. By the simple provision of an openAPI-yaml-file (which had already
been implemented for IM2D in D1.6 – GUI deployment), a compatible Python-package (like
Flasgger) can interpret this markup-file and automatically generate a graphical interface. This
interface exhibits all potential routes of a REST-service to be approached. Furthermore, it
specifies which kind of data types are allowed as potential variables and inputs for certain
parameters in the URL, keyword arguments in the HTTP-query, or serialisations in the HTTP-
body. Additionally, the user is able to directly interact and test the endpoints with given

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 24

examples in any common web-browser without the need to enter a separate programming
environment (see https://app3.materials-data.space as examples for IM2D hosted on the
MarketPlace). Moreover, an equivalent cURL-command is generated, which can directly be
used in any Linux-command line. The possible output formats are displayed with examples as
well. Figure 16 shows a screenshot of some of the available HTTP-endpoints of the IM2D app
visualised through the Swagger UI.

Overall, a Swagger UI offers the opportunity for any software developer to directly inspect the
backend services of the IM2D-application and directly integrate its capabilities into their own
application – regardless of the driving programming language.

Figure 16: Screenshot of some of the available HTTP-endpoints of the IM2D app visualised through the Swagger-UI. The fields
of "workflow" and "level" are variables in the URL which can be replaced with different options for a workflow to be run and

with the user level to be chosen. The dropdown-menus exhibit all available options for those variables. The return of this
HTTP-request is a JSON-file holding all potential input parameters of a certain workflow the user may adjust for a demanded
user level. The field “structure” is a placeholder for a material-UUID for which the user wants to have a recommendation for
default input values for different simulation accuracies. The URL from this REST-endpoint is then appended to the specified

host the application is running on [10] and can be used by any third-party-tool such as the GUI.

For the case of semantic data, the programmer is able to download CUDS-objects as output of
the simulation in any common serialisation format (TTL/OWL/JSON-LD) and to directly
integrate it into any third-party tool by using ontologies (e.g., other SimPhoNy-wrappers,
Protégé, WebVOWL, etc.).

Furthermore, SPARQL-queries can be inserted manually at a separate route in order to
semantically explore the available data for certain materials and properties defined by the
EMMO-ontologies (see Figure 17). In case of a non-SPARQL-user, the programmer can also
search individuals of a specific property for the specific EMMO-UUIDs of an ontology-class (e.g.,
EMMO_b2f5be57-53bb-4971-8365-681cc2024a47 for the band gap) or search by the
associated label of that class (e.g., BandGap, UnitCell, etc.).

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 25

Figure 17: Examples for a response when the Swagger UI is used for querying for a specific CUDS (here: eb5b15ee-6486-43a4-
87e4-75b840f75abc for the unit cell of silicon). The upper window shows the corresponding cURL-command and the lower

window the TTL-file serialisation which can be downloaded directly and used by any other third-party tool.

Conclusion and outlook

Considering the development activities for the source code of the IM2D toolbox, we put in
place a set of modern technologies, such as git and its supporting tools like CI/CD-pipelines, for
testing the code stability and ReadTheDocs documentation.

The repositories involved in the IM2D simulation box are hosted on the private Fraunhofer
Gitlab and public Github. Since the versioning is related to the docker registry, the
reproducibility of previous code variations is guaranteed. The pipelines are supported by
different stages of unit tests, which check the range from basic functionalities of the REST API
up to the performance of a whole workflow simulating material properties like the band gap.
The documentation for the backend services of AiiDA and SimPhoNy comprises a broad range
of contents, covering the installation guide, the description of the app architecture and the
user tutorials for the REST API. The REST API itself is documented through the openAPI-
specification that produces an interactive Swagger UI that can be used to explore all possible
entry points and routes of the HTTP server.

The documentation for the corresponding GUI is available separately from the ReadTheDocs-
pages in the form of a PDF and can be obtained by contacting the AMAT customer service or
the INTERSECT coordination directly.

HORIZON2020

Deliverable D1.7
Internal check tests and IM2D documentation

 www.intersect-project.eu 26

Potential future development steps may include further descriptions for the testing and/or the
implementation of advanced configurations in the official documentation. This may, e.g.,
incorporate a possible scaling of the app components to other databases and triplestores, or
connecting the workflow management of AiiDA to high-performance clusters or other
associated facilitations. Regarding the documentation, the description of the application- and
domain-ontologies need to be expanded so that further properties and workflows can be
added to the semantically interpreted workflows of SimPhoNy and AiiDA. This would also
enable the introduction of new input parameters, properties, workflows, and even new
persona profiles. On the other hand, also the docker-compose setup will be documented in
more detail so that an app-administrator is able to exchange single app components such as
the QE- and SIESTA-version or the triplestores and databases without further effort.

References and links

[1] https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/aiida-wrapper
[2] https://github.com/aiidateam/aiida-quantumespresso
[3] https://github.com/siesta-project/aiida_siesta_plugin
[4] https://github.com/epfl-theos/aiida-defects
[5] https://github.com/aiidateam/aiida-pseudo
[6] https://gitlab.cc-asp.fraunhofer.de/intersect/ext_to_aiida
[7] https://gitlab.cc-asp.fraunhofer.de/simphony/wrappers/allegrograph-wrapper
[8] https://gitlab.cc-asp.fraunhofer.de/ontology/applications/intersect/im2d-electronic-calculations
[9] https://gitlab.cc-asp.fraunhofer.de/intersect/docs
[10] localhost:7000/api/v4/intersect/properties/band_gap.pw/inputs/basic in case of a local
deployment or https://app3.materials-data.space/api/v4/intersect/properties/band_gap.pw/
inputs/basic in case of the MarketPlace.

Acronyms

CI – Continuous Integration
CD – Continuous Deployment
CUDS - Common Universal Data Structure
EMMO – European Material Modelling Ontology
GUI – Graphical User Interface
IM2D – Interoperable Materials-to-Device
REST API – Representational State Transfer Application Programming Interface
OSP – Open Simulation Platform
UI – User Interface

