
HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 1

D1.2

Creation of code repository and versioning

system

Adham Hashibon and Yoav Nahshon

Ref. Ares(2019)5009410 - 31/07/2019

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 2

Document information

Project acronym: INTERSECT

Project full title: Interoperable Material-to-Device simulation box for

disruptive electronics

Research Action Project type: Accelerating the uptake of materials modelling software

(IA)

EC Grant agreement no.: 814487

Project starting / end date: 1st January 2019 (M1) / 31st January 2022 (M37)

Website: www.intersect-project.eu

Final version: 17/07/2019

Deliverable No.: D1.2

Responsible participant: Fraunhofer (participant number 5)

Contributing Consortium members: FRA, EPFL, AMAT

Due date of deliverable: 31/07/2019

Actual submission date: 30/07/2019

Dissemination level: PU - Public

Authors: Adham Hashibon and Yoav Nahshon

To be cited as: A. Hashibon and Y. Nahshon (2019): Creation of code

repository and versioning system. Deliverable D1.2 of

the H2020 project INTERSECT (final version as of

17/07/2019). EC grant agreement no: 814487,

Fraunhofer Gesellschaft Zur Foerderung Der

Angewandten Forschung E.V., Freiburg, DE.

Disclaimer:

This document’s contents are not intended to replace consultation of any applicable legal

sources or the necessary advice of a legal expert, where appropriate. All information in this

document is provided "as is" and no guarantee or warranty is given that the information is fit

for any particular purpose. The user, therefore, uses the information at its sole risk and

liability. For the avoidance of all doubts, the European Commission has no liability in respect

of this document, which is merely representing the authors' view.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 3

D1.2: Code repository and versioning system

Contents

Executive Summary 4

Next steps 4

Description of Work done 6

Results 7

The Intersect Code Repository on GitLab 7

Introduction to Git and its eco system 7

How to access the INTERSECT GitLab repository: 8

On Gitlab Terminology 9

Creating a new repository 10

Further information on GitLab 10

General Collaborative Workflow 10

The INTERSECT Developers Manifest 13

Additional information 14

Creating Issues 14

Branching and association with issues 15

How to create an issue-associated branch 15

How to work locally on the newly created branch 15

Committing & Pushing 15

How to commit and push changes 16

Creating Merge Requests 16

How to create a merge request 16

Markdown language 16

Team Communication: Mattermost 16

The Mattermost APP for mobile and Desktop 17

Mattermost functionality in a nutshell 18

Specifically mentioning and addressing members in messages 20

Formatting 20

REFERENCES 27

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 4

Executive Summary

This task comprises the activities devoted to the definition of the quality standards for the

software developed in the project, as well as the codes comprised in the Interoperable

Materials-To-Device (IM2D) box and the quality assurance procedures, in agreement with the

EU White Paper for standards of modelling software development [1].

Specific actions performed are

(i) Creation of a central code repository and versioning system, see

(ii) Figure 1 and

(iii) Figure 2

(iv) Organization of software development

(v) Definition of a testing protocols and providing the infrastructure needed for each

of the components of the IM2D box, of the interfaces, wrappers and plugins for

interoperability;

(vi) Central code repository and versioning are controlled through GitLab system,

based at Fraunhofer

(vii) Provision of a battery of tests to feed the protocol defined above

(viii) Provision for production of software documentation, including description of

models, physical equations and material relations; code architecture, installation

and user guide, and test execution examples.

For (v) and (vi) more work needs to be done in tandem with the code developed, as the

testing and documentation suits need to be customized per each case.

Furthermore, to ensure coherent and efficient collaboration a beginner’s guide and general

introduction to software development tools is given together with a developer manifesto.

The manifest is to be followed by all developers and contains explanation of how to use

Gitlab and related collaboration tools and will be updated after feedback from all developers

with common naming conventions and semantic versioning that are most suitable to all

partners in order to: 1. Ease the review process by reducing confusion stemming from non-

standard naming (e.g., naming a variable as a method), and 2. To enable better long term

manageability and clarity of the codes thus assisting in their upscaling and uptake by

industry.

Additionally, a state-of-the-art self-hosted team communication platform has been provided

and set up using Fraunhofer hosted Mattermost server that shares the same sign on

credentials with Gitlab. This allows team members to exchange rapid short messages related

to various topics before starting issues on GitLab. It is hooked up with the GitLab system so

that various developers can interact and discuss related issues and other project matters on

Mattermost. It is provided as an added feature.

Next steps

Continuous maintenance and updates are performed for the entire project duration. Beyond

the project, the open parts of the code will keep being maintained as open source project.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 5

Additionally, the partners can maintain their own repositories for commercial exploitation in

tandem with consortium decisions.

Next steps for the coming period constitute of

1. Conducting online tutorials for all partners that need introduction to the tools, and

2. Customization of the continuous integration, docker registry and integration and

deployment workflows so that development and official releases of the various

components can be automatically managed through this task. This essentially

addresses the objective (v) provision of a battery of tests and (vi) provision for

production of software documentation

Figure 1: A snapshot showing the main settings of the INTERSECT GitLab space. Every partner has rights to open

new repositories (called projects on GitLab) and add collaborators to it (from within the INTERSECT team).

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 6

Figure 2: snapshot of the members setting page of the GitLab repository.

Description of Work done

Work done in this task includes:

(i) Creation and setup of a central code repository and versioning system on

Fraunhofer GitLab servers hosted in Europe;

(ii) Creating a Developer Manifest and initial how-to and documentation (as part of

this deliverable) covering login and basic work to partners to rapidly get started

using the tools

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 7

(iii) Creating a developer resources repository for exchange of documentation

relevant to the developers

(iv) Providing the infrastructure needed for each of the components of the IM2D box,

of the interfaces, wrappers and plugins for interoperability;

(v) Support for project partners to login and use the system

Results

The Intersect Code Repository on GitLab

Introduction to Git and its eco system

Git is the most widely used version control system and a de-facto standard. Git is an open

source project originally developed in 2005 by Linus Torvalds the famous creator of the Linux

operating system kernel (according to some accounts, the first version took about in just 3

days!). Git is actively developed and supported by numerous stakeholders, including

Microsoft, Google, Facebook, etc.

(see e.g., https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F and

https://www.atlassian.com/git/tutorials/what-is-git)

Git is based on a distributed, non-centralized architecture (hence Distributed Version Control

System - DVCS).

In Git, every developer has a full working copy of the entire repository with the full history

of all changes made. Git provides powerful, yet simple, tools to merge, and track changes

across developers.

The big advantage is: every developer can work independently more rapidly, however still we

need means to allow for better enhanced collaboration between developers working on the

same project or collection of projects (like in INTERSECT) and users giving feedback

designers, architects, etc. This can be done per email or phone, but best through dedicated

online collaborative code development platforms based on Git.

Two such widely used platforms are GitHub and GitLab.

What is GitHub (From Wikipedia) GitHub is an American company that

provides hosting for software development version control using Git. It is a subsidiary

of Microsoft, which acquired the company in 2018 for $7.5 billion [2]. It offers all of

the distributed version control and source code management (SCM) functionality of Git as

well as adding its own features. It provides access control and several collaboration features

such as bug tracking, feature requests, task management, and wikis for every project [3].

What is GitLab? (from Gitlab.com) GitLab is a single application for the entire DevOps

lifecycle. This makes GitLab unique and makes Concurrent DevOps possible, unlocking your

organization from the constraints of a pieced together toolchain. Join us for a live Q&A to

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 8

learn how GitLab can give you unmatched visibility and higher levels of efficiency in a single

application across the DevOps lifecycle.

Both share much of the same functionalities and have similar features but differ slightly,

though for our needs, there is a major difference is that we can easily host our own Gitlab but

not our own GitHub (commercial, requires a license). For our EU project it is important that

the data is hosted on EU servers complying with the EC regulations (e.g., GDPR). For this,

since GitLab is an open source project, users can have their own instance of Gitlab hosted on

the servers of their choice. GitHub does not provide such an option (they do provide an

enterprise edition that can be self-hosted, but not an open source one).

Moreover, GitLab integrates with docker registries, continuous integration and other tools

that enable a full DevOps workflow to be set up on our own servers. On GitHub, even if we

get a free hosted account or pay for it, we still need to configure and buy additional

continuous integration and docker registry services (the free options are too limited for the

project needs in the long run).

For these reasons we choose GitLab that is hosted in Europe (Germany) on Fraunhofer

infrastructure, open to all partners, includes docker registry and can be configured at ease to

use our own servers for unlimited continuous integration for free.

How to access the INTERSECT GitLab repository:

A git repository is set up and can be accessed at the address:

https://gitlab.cc-asp.fraunhofer.de/intersect

which directs users to the standard login page, see Figure 3.

Accounts have been opened to all partners. Additional accounts can be further opened by

Fraunhofer, on request.

Once signed in, click on Groups and pick INTERSECT, you are then in the project’s git space on

GitLab (called Group in the GitLab terminology).

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 9

Figure 3: the partner login page on the GitLab repository. Note that you must activate the standard login if you

are not employee at Fraunhofer. The page can be reached by either link https://gitlab.cc-

asp.fraunhofer.de/intersect.

 On Gitlab Terminology

• Repository: A repository is what you use to store your codebase in GitLab and change

it with version control. A repository is part of a project, which has a lot of other

features.

• Projects: are used for hosting your codebase, use it as an issue tracker, collaborate on

code, and continuously build, test, and deploy your app with built-in GitLab CI/CD.

• Gitlab Group: an EU Project with many projects and hence many repositories,

essentially it is a collection of repositories i.e., a group of repositories and related

tools, like issue tracker, collaboration, etc.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 10

Creating a new repository

A new repository is a software project and can be created thus as a part of a new Project in

GitLab’s terminology. Simply click on New project (see green arrow in Figure) and follow the

instructions. By default, all members added to a GitLab Group have access to all projects (i.e.,

INTERSECT repositories). This can be managed by the specific project setting: click on the

repository (project) (see Figure for example) then on the side bar, click on members.

Further information on GitLab

This deliverable document is not intended to give a thorough deep nor complete tutorial of

GitLab (nor Git), however the most elementary options are mentioned here to get you

started. An excellent official resource is available online for free at:

https://about.gitlab.com/handbook/

Partners are encouraged to check it out. There are also numerous resources in the internet

including tutorials on you tube etc.

Figure 4: view after logging in. If you are not in the INTERSECT space, click on groups in the top bar (shown by a

red arrow) and pick INTERSECT. If not there, please contact Task Leader.

Additionally, as this is a Git based repository, i.e., it is not centralized in the sense that each

partner has always a full copy of the repository once they check it out or clone it (see below

for explanation), the partners can maintain their own repositories for further exploitation in

tandem with decisions in WP1 and WP2.

General Collaborative Workflow

Recommended additional reads Ref. [4].

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 11

In general, the way we work with git is as follows:

1. You need a copy of a git repository on your file system:

a. Clone an existing repository from either GitLab/GitHub or another directory

- Type the following in your command line

 > git clone <address of repo>

b. Or, create a new repository from scratch,

- Type the following in your command line

> Git init (to create a new repository in a folder in your system)

c. Or use the Gitlab web interface to create it first and then clone it as in 1.

2. Develop your code on your local copy– by default you will be working on the so-called

Master branch, this is the main default branch

3. When you want to test various options, or work on one or more new features it

makes sense to make branches, which are essentially copies of the master (or other

branch) at the point of branching.

a. You can have as many branches as needed (see naming convention of

branches below in the manifest).

b. You can switch between branches, or in other words activate a branch, by

checking it out from your local working repository.

i. Type the following in your command line

git checkout -b <New branch name> to create a new bench and Change

to it (checking it out)

ii. Type the following in your command line

git checkout <existing branch name> to switch (checkout) to an existing

branch. NOTE: you are still working locally, on your own repository, you

are just creating local branches!

4. In each branch you check out, you can now do your code development. If you are

happy, you can merge back to your copy of the master (again we are still working

locally, while other developers have also copy of master).

a. You first need to stage your changes for committing.

Git keeps track of the changes you make to source code file in each branch. You may not be

interested though in merging all those changes to your local master, e.g., no backup files, or

temporary ones. Moreover, you may have a number of large binary files generated through

the compilation or testing process, or even worse, some files with passwords, or other

sensitive information, so here git provides and actually demands that the user specifies

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 12

explicitly which files should be actually included in the commit, i.e., become part of the actual

development (again, all are local on your hard disk or storage). This is called staging in the Git

Jargon.

b. Staging is done by the “git add command”:

i. Use

> git add <file1> <file2>

for committing onto your current branch!

NOTE: never add files automatically, like git add -A, as you would may push

unwanted changes!

5. Now you can make a commit, meaning you are registering the changes in this branch

to its own history. This is done by the commit command.

a. Use

> git commit -c “this is a commit with a short comment”

b. The comment should be short, and contain information on the issue (see

manifest below)

6. The next step is to merge back or push your changes in the current branch to the

master branch, again the local one!

a. However, since we are doing a collaborative development (even if you are the

only developer! still others need to review your code) you never merge with

your local master! Instead, you push your developer branch upstream, i.e., to

the GitLab project repository by the following command:

i. git push

- this command will push the local branch to the upstream

repository on GitLab. If you get something like:

- > ~/developer_resources$ git push

fatal: The current branch review has no upstream branch.

To push the current branch and set the remote as upstream,

use

git push --set-upstream origin review

- Then simply do as told! This is needed since usually when you

first created the branch it was done locally, and this command

published your new branch to the common repository on

GitLab.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 13

b. Once the branch is pushed, you need to create a merge request and ask a

fellow developer or collaborated to review the code. GitLab provides online

tools to see the changes and compare versions, as well as auto tests.

c. Once the branch is reviewed it can be merged to master.

d. It is best to check the status of the repository each time to see whether your

local copy is in sync, behind or after the master by doing:

i. Git status

The INTERSECT Developers Manifest

The developer manifesto is also available online on the repository and ownCloud for all

partners and will be continuously updated to adapt to possible changing needs of the project.

The manifesto is in the repository “Developer Resources” accessed at:

https://gitlab.cc-asp.fraunhofer.de/intersect/developer_resources

 It includes definition of INTERSECT’s naming conventions (for classes, variables, methods,

etc.), semantic versioning, review process workflow and guidelines, etc., to ensure coherent

and efficient collaboration.

Continuous maintenance and updates are needed for the entire project duration. The entire

repository will be managed, especially the open (publicly accessible) parts of the code will

keep being maintained as open source project.

Feedback from all users and partners is welcome through the same procedure for code

reviews outlined in this document itself. In other words, any suggestions for change or

feedback should start by submitting an issue on Gitlab as explained below.

Before we start with the developer manifest itself, we introduce git and GitLab in general

focusing on getting you started and most importantly, mentioning where you can access and

get more information. As there is an abundance of very good and free documentation on the

net, it does not make sense to get deeper in this focused deliverable.

The following are the best practices [1] proposed for all development in INTERSECT, all

developers are strongly advised to adhere to these guidelines in the manifest:

1. Each feature, bug fix, no matter how small, must be associated with a Git Issue

opened on Gitlab. See below how to open one.

a. Choose a short descriptive naming of the issue

b. Add a short description of what is needed and why

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 14

c. It is recommended to use referencing using @username to invite certain

developers to discuss the issue before or while you are implementing.

2. Create a branch to address the issue,

a. Branch naming convention: it is a good practice to add the type of issue (fix,

feature) and the main issues numbers to the name of the branch, like so: 45-

fix-something would be a branch to fix issue #45. NOTE: If branches are

created from issues, the GitLab will suggest a name for it, it is a good practice

to use it. (e.g., 39-login-not-working).

b. Though often a branch may address more than one issue, in this case choose a

descriptive name, like so: fix-crash-GUI

c. Create unit tests for your code

(see https://gitlab.cc-asp.fraunhofer.de/help/ci/README.md)

3. Work on the branch and discuss the implementation with fellow developers/designed

on the issue page and/or using Mattermost

4. Once you change the code, push it to the GitLab (this is the “ORIGIN” repository that

all developers sync and develop against.)

5. Commit as often as you can. Open new issues as needed and link them to this branch

in the description of title. This allows you to revert changes and do tests

incrementally.

6. Once done, and you are happy with the code, initialize a merge request on GitLab and

specifically ask other fellow developers to review the code.

7. Let the WP leader review the code as well

8. Once all tests are passed, consulting with the developer and reviewer the WP leader

can merge the branch (or give the ok to the reviewer/developer to do so on the

review page on Gitlab)

Additional information

Please also check this: https://about.gitlab.com/2016/10/25/gitlab-workflow-an-

overview/#stages-of-software-development for a more detailed explanation

As well as the GitLab user documentation: https://gitlab.cc-

asp.fraunhofer.de/help/user/index.md

Creating Issues

How to create/open an issue:

Go to the Gitlab page of the repository and click on ‘Issues’ on the left sidebar.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 15

Click on ‘New Issue’ and fill in the details, including ‘Assignee’ (if known) and ‘Labels’:

Click on ‘Submit issue’.

Branching and association with issues

Once an issue has been opened, it can be directly associated to a new branch. It is a good

practice to associate each branch to an issue, since it allows the team members to see if

someone is already working on the issue, and what are the changes that have been made

concerning it.

How to create an issue-associated branch

To associate a branch to an issue, we go to the issue’s page on git lab, and choose ‘Create

branch’. We can change the name of the branch, and the source branch we are branching

from if need be.

How to work locally on the newly created branch

To work locally on the changes, we run the following commands:

• git pull

• git checkout --track origin/1-title-of-readme-file-is-too-long

The ‘git pull’ command informs the local repository about the new branch.

In the second command, we use the --track flag that is shorthand for git checkout -b [branch]

[remotename]/[branch]. It creates a local branch that is associated with the remote one, and

checks out (i.e., switches into) into that branch.

Committing & Pushing

It’s important to commit often, not only for having more checkpoints to return to in case of a

fallout of a certain approach, but also for the project’s periodical reports in which we can

show the amount of work that has already been invested in the project.

Here is such a chart that was taken from the OSP-core project:

Figure 5: Snapshot of Commitment Chart

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 16

Commit often, this documents your efforts for project reporting as well as IP, and in a very

good practice, it offers a backup and track of your work. Commit at least once a day at the

end of the work-day.

How to commit and push changes

After making the changes in our code, we can commit our changes and push them to the

remote repository by running the following commands:

git commit -a -m "shortening title"

git push -u origin 1-title-of-readme-file-is-too-long

The flag -a in the first command includes our changes in the current commit.

Note that it does not include unstaged files. For those, use the ‘git add’ command.

The flag -u links local branch with the remote branch automatically. In this case it is

redundant since the local branch is already associated with the remote one due to the ‘git

checkout’ command we ran before.

Creating Merge Requests

Once the work on the issue have been completed, we can create a merge request to the

master branch.

How to create a merge request

On the GitLab page, go to ‘Merge Requests’ on the left sidebar, and click on ‘Create merge

request’. Fill in the details as you see fit, and, importantly, assign a reviewer that will perform

the merging of the request to the master branch.

 Markdown language

See above and https://gitlab.cc-asp.fraunhofer.de/help/user/markdown

Team Communication: Mattermost

The accounts for GitLab are the same for the Mattermost service. It can be reached at:

https://mattermost.cc-asp.fraunhofer.de/intersect

To log in, you see a page directing you to the GitLab login page (see Figure 5) lick on GitLab

(red arrow) and then you will get the GitLab Login page, from then click on standard (another

red arrow) and then log in!

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 17

Figure 6: Login page of GitLab

About Mattermost: An alternative to proprietary SaaS messaging, Mattermost brings all your

team communication into one place, making it searchable and accessible anywhere. It’s

written in Golang and React and runs as a production-ready Linux binary under an MIT

license with either MySQL or Postgres. (cut&paste from mattermost.com).

The Mattermost APP for mobile and Desktop

While Mattermost can be accessed easily on any web browser with full functionality, you can

also download and install Apps for desktop or your mobile devices.

Visit: https://mattermost.com/download-v2/#mattermostApps

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 18

Figure 7: Mattermost client software is supported on all platform including mobile apps.

Mattermost functionality in a nutshell

An excellent user guide (short, with many pictures) is found here:

https://docs.mattermost.com/help/getting-started/welcome-to-mattermost.html#the-basics

The main concepts from the above link are brought here for convenience (cut&paste):

Teams

A team is a digital workspace where you and your teammates can collaborate in Mattermost.

Depending on how Mattermost is set up in your organization, you can belong to one team or

multiple teams.

In INTERSECT Mattermost we are all in the INTERSECT team, but can be also in others (e.g.,

EMMO team).

Channels

Channels are used to organize conversations across different topics. They are located on the

left-hand panel of Mattermost.

There are three types of channels: Public Channels, Private Channels, and Direct Messages.

Public Channels:

Public Channels are open to everyone on a team. New team members are automatically

added to two Public Channels when they sign up: Town Square and Off-Topic.

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 19

Figure 8: Side bar showing various channels (figure reproduced from:

https://docs.mattermost.com/help/getting-started/welcome-to-mattermost.html#the-basics)

Public Channels are identified with a globe icon.

Click on the More… button at the bottom of the Public Channels section to explore more

channels to join!

Private Channels:

Private Channels are for sensitive topics and are only visible to selected team members. Any

member of a Private Channel can add additional members. Channel members can choose to

leave at any time, but only the channel owner or Team Admin can remove other members.

Private Channels have a lock icon.

Direct Messages (DM) and Group Messages (GM)

Direct Messages are for conversations between two people. Group

Messages are Direct Messages that have conversations among three

or more people. Both are visible only to the people involved.

Messages

Sending messages and replying to messages are important ways to

keep conversations active with your team. You can edit and delete

messages after you have sent them. You can also share links to any

message in Mattermost.

The team settings are on the top left of the side bar, there you can

change settings like notifications (via email or desktop/mobile etc).

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 20

Specifically mentioning and addressing members in messages

Use the “@Mentions” options, namely, use “@” in the message to bring a list of users, start

typing to filter then pick the user. They will get a notification (on desktop or email) to alert

them.

Example:

Use @channel and @all to address all in a channel. All members in the channel receive a

notification.

You can control notifications in the Channel Menu > Notification Preferences > Ignore

mentions for @channel, @here and @all.

@here allows you to mention all that are online in a channel! (they get notifications)

Recent mention

Click @ next to the search box to query for your most recent @mentions and words that

trigger mentions. Click jump to go to them.

Formatting

Please see thorough and short description here:

https://docs.mattermost.com/help/messaging/formatting-text.html

e.g., to make a headline use: #, ##, etc. like so:

this is headline 1

this is subsection or headline 2 etc..

to make a list use:

1. Item 1

1. Item 2

1. Item three

(yes, all are 1. And can be any number, does not need to be sequential, since Mattermost will

then manage and order the numbering once you type enter and send the message!)

Mark-up enables also to use latex for equations, code syntax highlighting, and much more,

see link above.

Note: same mark-up is also used in Gitlab!

References

HORIZON2020

Deliverable D1.2

Creation of code repository and versioning system

 www.intersect-project.eu 21

[1] E. Wimmer, et al., “EMMC - White Paper for standards of modelling software

development”, https://emmc.info/emmc-csa-white-paper-for-standards-of-modelling-

software-development

[2] https://en.wikipedia.org/wiki/GitHub#cite_note-techcrunch-4

[3] https://en.wikipedia.org/wiki/GitHub#cite_note-hugeinvestment-5

[4] https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/#gitlab-workflow

